基带频率下非线性中频雷达硬件组件仿真方法综述

T.L. Barrett, S. M. Gilbert, M. Budge, L.D. Bennett
{"title":"基带频率下非线性中频雷达硬件组件仿真方法综述","authors":"T.L. Barrett, S. M. Gilbert, M. Budge, L.D. Bennett","doi":"10.1109/SSST.1993.522767","DOIUrl":null,"url":null,"abstract":"It is shown that the high sampling rate requirements of credible electronic countermeasure (ECM) simulations can be greatly reduced by developing baseband frequency models that are based on closed-form solutions, called nonlinear describing functions, which accurately define the effects that IF nonlinearities impose on realistic ECM signals. Two methods are given for obtaining the nonlinear describing function for any given nonlinearity: the transform method and the sinusoidal describing function method. An example of an ideal soft limiter shows that two methods yield identical nonlinear describing functions. However, the sinusoidal describing function method is much more readily applied than the transform method.","PeriodicalId":260036,"journal":{"name":"1993 (25th) Southeastern Symposium on System Theory","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An overview of methods for simulation of nonlinear IF radar hardware components at baseband frequencies\",\"authors\":\"T.L. Barrett, S. M. Gilbert, M. Budge, L.D. Bennett\",\"doi\":\"10.1109/SSST.1993.522767\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is shown that the high sampling rate requirements of credible electronic countermeasure (ECM) simulations can be greatly reduced by developing baseband frequency models that are based on closed-form solutions, called nonlinear describing functions, which accurately define the effects that IF nonlinearities impose on realistic ECM signals. Two methods are given for obtaining the nonlinear describing function for any given nonlinearity: the transform method and the sinusoidal describing function method. An example of an ideal soft limiter shows that two methods yield identical nonlinear describing functions. However, the sinusoidal describing function method is much more readily applied than the transform method.\",\"PeriodicalId\":260036,\"journal\":{\"name\":\"1993 (25th) Southeastern Symposium on System Theory\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1993 (25th) Southeastern Symposium on System Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSST.1993.522767\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1993 (25th) Southeastern Symposium on System Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSST.1993.522767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究表明,通过建立基于封闭解的基带频率模型(称为非线性描述函数),可以大大降低可信电子对抗(ECM)仿真的高采样率要求,该模型准确地定义了中频非线性对实际电子对抗信号的影响。对于任意给定的非线性,给出了两种获取非线性描述函数的方法:变换法和正弦描述函数法。一个理想软限幅器的实例表明,两种方法得到的非线性描述函数是相同的。然而,正弦描述函数法比变换法更容易应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An overview of methods for simulation of nonlinear IF radar hardware components at baseband frequencies
It is shown that the high sampling rate requirements of credible electronic countermeasure (ECM) simulations can be greatly reduced by developing baseband frequency models that are based on closed-form solutions, called nonlinear describing functions, which accurately define the effects that IF nonlinearities impose on realistic ECM signals. Two methods are given for obtaining the nonlinear describing function for any given nonlinearity: the transform method and the sinusoidal describing function method. An example of an ideal soft limiter shows that two methods yield identical nonlinear describing functions. However, the sinusoidal describing function method is much more readily applied than the transform method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信