基于多尺度像素关注的盲高斯深度去噪网络

Ramesh Kumar Thakur, S. K. Maji
{"title":"基于多尺度像素关注的盲高斯深度去噪网络","authors":"Ramesh Kumar Thakur, S. K. Maji","doi":"10.1109/VCIP56404.2022.10008856","DOIUrl":null,"url":null,"abstract":"Many deep learning networks focus on the task of Gaussian denoising by processing images on a fixed scale or multiple scales using convolution and deconvolution. In certain cases, excessive scaling applied in the network results in the loss of image details. Sometimes, the usage of deeper convolutional networks results in the loss of network gradient. In this paper, to overcome both the problems, we propose a multi-scale pixel attention-based blind Gaussian denoiser network that utilizes a combination of important features at five different scales. The proposed network performs blind Gaussian denoising in the sense that it does not need any prior information about noise. It comprises a central multi-scale pixel attention block together with dilated convolutional layers and skip connections that help in utilizing the full receptive field of the first convolutional layer to the last convolutional layer and is based on residual architecture for propagating high-level information easily in the network. We have provided the code of the proposed technique at https://github.com/RTSIR/MSPABDN.","PeriodicalId":269379,"journal":{"name":"2022 IEEE International Conference on Visual Communications and Image Processing (VCIP)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Blind Gaussian Deep Denoiser Network using Multi-Scale Pixel Attention\",\"authors\":\"Ramesh Kumar Thakur, S. K. Maji\",\"doi\":\"10.1109/VCIP56404.2022.10008856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many deep learning networks focus on the task of Gaussian denoising by processing images on a fixed scale or multiple scales using convolution and deconvolution. In certain cases, excessive scaling applied in the network results in the loss of image details. Sometimes, the usage of deeper convolutional networks results in the loss of network gradient. In this paper, to overcome both the problems, we propose a multi-scale pixel attention-based blind Gaussian denoiser network that utilizes a combination of important features at five different scales. The proposed network performs blind Gaussian denoising in the sense that it does not need any prior information about noise. It comprises a central multi-scale pixel attention block together with dilated convolutional layers and skip connections that help in utilizing the full receptive field of the first convolutional layer to the last convolutional layer and is based on residual architecture for propagating high-level information easily in the network. We have provided the code of the proposed technique at https://github.com/RTSIR/MSPABDN.\",\"PeriodicalId\":269379,\"journal\":{\"name\":\"2022 IEEE International Conference on Visual Communications and Image Processing (VCIP)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Visual Communications and Image Processing (VCIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VCIP56404.2022.10008856\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP56404.2022.10008856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

许多深度学习网络通过使用卷积和反卷积处理固定尺度或多尺度的图像来关注高斯去噪任务。在某些情况下,网络中的过度缩放会导致图像细节的丢失。有时,使用更深的卷积网络会导致网络梯度的损失。在本文中,为了克服这两个问题,我们提出了一种基于多尺度像素注意力的盲高斯去噪网络,该网络利用了五个不同尺度上重要特征的组合。该网络在不需要任何关于噪声的先验信息的情况下进行盲高斯去噪。它包括一个中央多尺度像素注意块以及扩展的卷积层和跳跃式连接,该连接有助于利用第一卷积层到最后卷积层的完整接受场,并且基于残差架构,以便在网络中轻松传播高级信息。我们已经在https://github.com/RTSIR/MSPABDN上提供了所建议技术的代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Blind Gaussian Deep Denoiser Network using Multi-Scale Pixel Attention
Many deep learning networks focus on the task of Gaussian denoising by processing images on a fixed scale or multiple scales using convolution and deconvolution. In certain cases, excessive scaling applied in the network results in the loss of image details. Sometimes, the usage of deeper convolutional networks results in the loss of network gradient. In this paper, to overcome both the problems, we propose a multi-scale pixel attention-based blind Gaussian denoiser network that utilizes a combination of important features at five different scales. The proposed network performs blind Gaussian denoising in the sense that it does not need any prior information about noise. It comprises a central multi-scale pixel attention block together with dilated convolutional layers and skip connections that help in utilizing the full receptive field of the first convolutional layer to the last convolutional layer and is based on residual architecture for propagating high-level information easily in the network. We have provided the code of the proposed technique at https://github.com/RTSIR/MSPABDN.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信