{"title":"多传感器融合性能预测与验证研究","authors":"Rong Wang, B. Bhanu","doi":"10.1109/CVPR.2007.383112","DOIUrl":null,"url":null,"abstract":"Multiple sensors are commonly fused to improve the detection and recognition performance of computer vision and pattern recognition systems. The traditional approach to determine the optimal sensor combination is to try all possible sensor combinations by performing exhaustive experiments. In this paper, we present a theoretical approach that predicts the performance of sensor fusion that allows us to select the optimal combination. We start with the characteristics of each sensor by computing the match score and non-match score distributions of objects to be recognized. These distributions are modeled as a mixture of Gaussians. Then, we use an explicit Phi transformation that maps a receiver operating characteristic (ROC) curve to a straight line in 2-D space whose axes are related to the false alarm rate (FAR) and the Hit rate (Hit). Finally, using this representation, we derive a set of metrics to evaluate the sensor fusion performance and find the optimal sensor combination. We verify our prediction approach on the publicly available XM2VTS database as well as other databases.","PeriodicalId":351008,"journal":{"name":"2007 IEEE Conference on Computer Vision and Pattern Recognition","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the Performance Prediction and Validation for Multisensor Fusion\",\"authors\":\"Rong Wang, B. Bhanu\",\"doi\":\"10.1109/CVPR.2007.383112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiple sensors are commonly fused to improve the detection and recognition performance of computer vision and pattern recognition systems. The traditional approach to determine the optimal sensor combination is to try all possible sensor combinations by performing exhaustive experiments. In this paper, we present a theoretical approach that predicts the performance of sensor fusion that allows us to select the optimal combination. We start with the characteristics of each sensor by computing the match score and non-match score distributions of objects to be recognized. These distributions are modeled as a mixture of Gaussians. Then, we use an explicit Phi transformation that maps a receiver operating characteristic (ROC) curve to a straight line in 2-D space whose axes are related to the false alarm rate (FAR) and the Hit rate (Hit). Finally, using this representation, we derive a set of metrics to evaluate the sensor fusion performance and find the optimal sensor combination. We verify our prediction approach on the publicly available XM2VTS database as well as other databases.\",\"PeriodicalId\":351008,\"journal\":{\"name\":\"2007 IEEE Conference on Computer Vision and Pattern Recognition\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2007.383112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2007.383112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the Performance Prediction and Validation for Multisensor Fusion
Multiple sensors are commonly fused to improve the detection and recognition performance of computer vision and pattern recognition systems. The traditional approach to determine the optimal sensor combination is to try all possible sensor combinations by performing exhaustive experiments. In this paper, we present a theoretical approach that predicts the performance of sensor fusion that allows us to select the optimal combination. We start with the characteristics of each sensor by computing the match score and non-match score distributions of objects to be recognized. These distributions are modeled as a mixture of Gaussians. Then, we use an explicit Phi transformation that maps a receiver operating characteristic (ROC) curve to a straight line in 2-D space whose axes are related to the false alarm rate (FAR) and the Hit rate (Hit). Finally, using this representation, we derive a set of metrics to evaluate the sensor fusion performance and find the optimal sensor combination. We verify our prediction approach on the publicly available XM2VTS database as well as other databases.