{"title":"基于语音分析的帕金森病诊断支持向量机递归特征消除","authors":"Hengbo Ma, Tianyu Tan, Hongpeng Zhou, Tianyi Gao","doi":"10.1109/ICICIP.2016.7885912","DOIUrl":null,"url":null,"abstract":"Parkinson disease has become a serious problem in the old people. There is no precise method to diagnosis Parkinson disease now. Considering the significance and difficulty of recognizing the Parkinson disease, the measurement of samples' voices is regard as one of the best non-invasive ways to find the real patient. Support Vector Machine is one of the most effective tools to classify in machine learning, and it has been applied successfully in many areas. In this paper, we implement the SVM-recursive feature elimination which has not been used before for selecting the subset including the most important features for classification from the original features. We also implement SVM with PCA for selecting the principle components for diagnosis PD set with 22 features in order to compare. At last, we discuss the relationship between SVM-RFE and SVM with PCA specially in the experiment. The experiment illustrates that the SVM-RFE has the better performance than other methods in general.","PeriodicalId":226381,"journal":{"name":"2016 Seventh International Conference on Intelligent Control and Information Processing (ICICIP)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Support Vector Machine-recursive feature elimination for the diagnosis of Parkinson disease based on speech analysis\",\"authors\":\"Hengbo Ma, Tianyu Tan, Hongpeng Zhou, Tianyi Gao\",\"doi\":\"10.1109/ICICIP.2016.7885912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Parkinson disease has become a serious problem in the old people. There is no precise method to diagnosis Parkinson disease now. Considering the significance and difficulty of recognizing the Parkinson disease, the measurement of samples' voices is regard as one of the best non-invasive ways to find the real patient. Support Vector Machine is one of the most effective tools to classify in machine learning, and it has been applied successfully in many areas. In this paper, we implement the SVM-recursive feature elimination which has not been used before for selecting the subset including the most important features for classification from the original features. We also implement SVM with PCA for selecting the principle components for diagnosis PD set with 22 features in order to compare. At last, we discuss the relationship between SVM-RFE and SVM with PCA specially in the experiment. The experiment illustrates that the SVM-RFE has the better performance than other methods in general.\",\"PeriodicalId\":226381,\"journal\":{\"name\":\"2016 Seventh International Conference on Intelligent Control and Information Processing (ICICIP)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Seventh International Conference on Intelligent Control and Information Processing (ICICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICIP.2016.7885912\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Seventh International Conference on Intelligent Control and Information Processing (ICICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP.2016.7885912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Support Vector Machine-recursive feature elimination for the diagnosis of Parkinson disease based on speech analysis
Parkinson disease has become a serious problem in the old people. There is no precise method to diagnosis Parkinson disease now. Considering the significance and difficulty of recognizing the Parkinson disease, the measurement of samples' voices is regard as one of the best non-invasive ways to find the real patient. Support Vector Machine is one of the most effective tools to classify in machine learning, and it has been applied successfully in many areas. In this paper, we implement the SVM-recursive feature elimination which has not been used before for selecting the subset including the most important features for classification from the original features. We also implement SVM with PCA for selecting the principle components for diagnosis PD set with 22 features in order to compare. At last, we discuss the relationship between SVM-RFE and SVM with PCA specially in the experiment. The experiment illustrates that the SVM-RFE has the better performance than other methods in general.