双流卷积网络提取有效的时空信息用于步态识别

Yijun Huang, Yaling Liang, Zhisong Han, Minghui Du
{"title":"双流卷积网络提取有效的时空信息用于步态识别","authors":"Yijun Huang, Yaling Liang, Zhisong Han, Minghui Du","doi":"10.1109/SPAC49953.2019.244101","DOIUrl":null,"url":null,"abstract":"Gait recognition identifies a person based on gait feature which is a kind of unique biometric feature that can be acquired at a distance and needn’t cooperation. Gait features consist of abundant temporal features and spatial features. To make good use of the spatiotemporal information in gait features, we propose a two-stream network for gait recognition. In the temporal stream, we insert M3D architecture to an 2D network to capture the temporal information of different time perception domains. What’s more, we combine triplet loss, center loss with ID loss as our loss function to reduce the intra-class distance while increasing the inter-class distance which aids in classification. Our proposed method achieves a new state-of-the-art recognition accuracy in the CASIA-B database with the average rank-l accuracy of 95.63% on the NM subset, 90.86% on the BG subset and 72.15% on the CL subset.","PeriodicalId":410003,"journal":{"name":"2019 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Two-Stream Convolutional Network Extracting Effective Spatiotemporal Information for Gait Recognition\",\"authors\":\"Yijun Huang, Yaling Liang, Zhisong Han, Minghui Du\",\"doi\":\"10.1109/SPAC49953.2019.244101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gait recognition identifies a person based on gait feature which is a kind of unique biometric feature that can be acquired at a distance and needn’t cooperation. Gait features consist of abundant temporal features and spatial features. To make good use of the spatiotemporal information in gait features, we propose a two-stream network for gait recognition. In the temporal stream, we insert M3D architecture to an 2D network to capture the temporal information of different time perception domains. What’s more, we combine triplet loss, center loss with ID loss as our loss function to reduce the intra-class distance while increasing the inter-class distance which aids in classification. Our proposed method achieves a new state-of-the-art recognition accuracy in the CASIA-B database with the average rank-l accuracy of 95.63% on the NM subset, 90.86% on the BG subset and 72.15% on the CL subset.\",\"PeriodicalId\":410003,\"journal\":{\"name\":\"2019 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPAC49953.2019.244101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAC49953.2019.244101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

步态识别是基于步态特征对人进行识别,步态特征是一种独特的生物特征,可以在一定距离内获得,不需要合作。步态特征包括丰富的时间特征和空间特征。为了充分利用步态特征中的时空信息,提出了一种双流网络进行步态识别。在时间流中,我们将M3D结构插入到二维网络中,以捕获不同时间感知域的时间信息。此外,我们结合三重态损失、中心损失和ID损失作为损失函数,减少了类内距离,增加了类间距离,有助于分类。我们提出的方法在CASIA-B数据库中实现了新的最先进的识别精度,NM子集的平均rank- 1准确率为95.63%,BG子集为90.86%,CL子集为72.15%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two-Stream Convolutional Network Extracting Effective Spatiotemporal Information for Gait Recognition
Gait recognition identifies a person based on gait feature which is a kind of unique biometric feature that can be acquired at a distance and needn’t cooperation. Gait features consist of abundant temporal features and spatial features. To make good use of the spatiotemporal information in gait features, we propose a two-stream network for gait recognition. In the temporal stream, we insert M3D architecture to an 2D network to capture the temporal information of different time perception domains. What’s more, we combine triplet loss, center loss with ID loss as our loss function to reduce the intra-class distance while increasing the inter-class distance which aids in classification. Our proposed method achieves a new state-of-the-art recognition accuracy in the CASIA-B database with the average rank-l accuracy of 95.63% on the NM subset, 90.86% on the BG subset and 72.15% on the CL subset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信