基于强化学习的建筑集群共享储能资产控制

Philip Odonkor, K. Lewis
{"title":"基于强化学习的建筑集群共享储能资产控制","authors":"Philip Odonkor, K. Lewis","doi":"10.1115/DETC2018-86094","DOIUrl":null,"url":null,"abstract":"This work leverages the current state of the art in reinforcement learning for continuous control, the Deep Deterministic Policy Gradient (DDPG) algorithm, towards the optimal 24-hour dispatch of shared energy assets within building clusters. The modeled DDPG agent interacts with a battery environment, designed to emulate a shared battery system. The aim here is to not only learn an efficient charged/discharged policy, but to also address the continuous domain question of how much energy should be charged or discharged. Experimentally, we examine the impact of the learned dispatch strategy towards minimizing demand peaks within the building cluster. Our results show that across the variety of building cluster combinations studied, the algorithm is able to learn and exploit energy arbitrage, tailoring it into battery dispatch strategies for peak demand shifting.","PeriodicalId":138856,"journal":{"name":"Volume 2A: 44th Design Automation Conference","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Control of Shared Energy Storage Assets Within Building Clusters Using Reinforcement Learning\",\"authors\":\"Philip Odonkor, K. Lewis\",\"doi\":\"10.1115/DETC2018-86094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work leverages the current state of the art in reinforcement learning for continuous control, the Deep Deterministic Policy Gradient (DDPG) algorithm, towards the optimal 24-hour dispatch of shared energy assets within building clusters. The modeled DDPG agent interacts with a battery environment, designed to emulate a shared battery system. The aim here is to not only learn an efficient charged/discharged policy, but to also address the continuous domain question of how much energy should be charged or discharged. Experimentally, we examine the impact of the learned dispatch strategy towards minimizing demand peaks within the building cluster. Our results show that across the variety of building cluster combinations studied, the algorithm is able to learn and exploit energy arbitrage, tailoring it into battery dispatch strategies for peak demand shifting.\",\"PeriodicalId\":138856,\"journal\":{\"name\":\"Volume 2A: 44th Design Automation Conference\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2A: 44th Design Automation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/DETC2018-86094\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2A: 44th Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/DETC2018-86094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

这项工作利用了当前最先进的连续控制强化学习,即深度确定性策略梯度(DDPG)算法,以实现建筑集群内共享能源资产的最佳24小时调度。建模的DDPG代理与电池环境交互,旨在模拟共享电池系统。这里的目的不仅是学习一个有效的充电/放电政策,而且还解决了应该充电或放电多少能量的连续域问题。在实验中,我们研究了学习调度策略对最小化建筑集群内需求峰值的影响。我们的研究结果表明,在研究的各种建筑集群组合中,该算法能够学习和利用能源套利,将其定制为峰值需求转移的电池调度策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Control of Shared Energy Storage Assets Within Building Clusters Using Reinforcement Learning
This work leverages the current state of the art in reinforcement learning for continuous control, the Deep Deterministic Policy Gradient (DDPG) algorithm, towards the optimal 24-hour dispatch of shared energy assets within building clusters. The modeled DDPG agent interacts with a battery environment, designed to emulate a shared battery system. The aim here is to not only learn an efficient charged/discharged policy, but to also address the continuous domain question of how much energy should be charged or discharged. Experimentally, we examine the impact of the learned dispatch strategy towards minimizing demand peaks within the building cluster. Our results show that across the variety of building cluster combinations studied, the algorithm is able to learn and exploit energy arbitrage, tailoring it into battery dispatch strategies for peak demand shifting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信