具有任意形状单元格的周期结构超表面的有效建模的傅里叶模态方法

M. Weismann, N. Panoiu
{"title":"具有任意形状单元格的周期结构超表面的有效建模的傅里叶模态方法","authors":"M. Weismann, N. Panoiu","doi":"10.1109/METAMATERIALS.2014.6948678","DOIUrl":null,"url":null,"abstract":"We introduce an expansion of the Fourier modal method for the analysis of periodic structures with oblique walls by using a three-dimensional normal vector field for the correct Fourier series factorization of products of discontinuous functions. Our numerical tests show that the improved method leads to faster convergence as compared to conventional two-dimensional decomposition rules.","PeriodicalId":151955,"journal":{"name":"2014 8th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics","volume":"351 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fourier modal method for efficient modeling of periodically structured metasurfaces with unit cells of arbitrary shape\",\"authors\":\"M. Weismann, N. Panoiu\",\"doi\":\"10.1109/METAMATERIALS.2014.6948678\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce an expansion of the Fourier modal method for the analysis of periodic structures with oblique walls by using a three-dimensional normal vector field for the correct Fourier series factorization of products of discontinuous functions. Our numerical tests show that the improved method leads to faster convergence as compared to conventional two-dimensional decomposition rules.\",\"PeriodicalId\":151955,\"journal\":{\"name\":\"2014 8th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics\",\"volume\":\"351 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 8th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/METAMATERIALS.2014.6948678\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 8th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/METAMATERIALS.2014.6948678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了斜壁周期性结构分析的傅里叶模态方法的扩展,利用三维法向量场对不连续函数的乘积进行正确的傅里叶级数分解。数值试验表明,与传统的二维分解规则相比,改进后的方法收敛速度更快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fourier modal method for efficient modeling of periodically structured metasurfaces with unit cells of arbitrary shape
We introduce an expansion of the Fourier modal method for the analysis of periodic structures with oblique walls by using a three-dimensional normal vector field for the correct Fourier series factorization of products of discontinuous functions. Our numerical tests show that the improved method leads to faster convergence as compared to conventional two-dimensional decomposition rules.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信