欠定盲信号分离混合矩阵估计新算法

Cui Zhi-tao, Jian Ke
{"title":"欠定盲信号分离混合矩阵估计新算法","authors":"Cui Zhi-tao, Jian Ke","doi":"10.1109/CIS.2012.90","DOIUrl":null,"url":null,"abstract":"The paper puts forward a new algorithm to estimate mixing-matrix according to the underdetermined blind signal separation of 3 observed signals and 4 sources. According to the geometric meaning of the SCA model, the paper analyzes the numerical feature of the observed signal and proves that the inner product under Euclidean space can be used to classify the observed signal in the situation. Besides, the paper gives a method for determining the number of source signal and introduces an estimation algorithm for mixing-matrix using inner products in the Euclidean space combined with the density of interval point. The algorithm can effectively identify the number of source signals and can realize the estimation of mixing-matrix. The experimental results show the algorithm is feasible.","PeriodicalId":294394,"journal":{"name":"2012 Eighth International Conference on Computational Intelligence and Security","volume":"361 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A New Algorithm to Estimate Mixing-Matrix of Underdetermined Blind Signal Separation\",\"authors\":\"Cui Zhi-tao, Jian Ke\",\"doi\":\"10.1109/CIS.2012.90\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper puts forward a new algorithm to estimate mixing-matrix according to the underdetermined blind signal separation of 3 observed signals and 4 sources. According to the geometric meaning of the SCA model, the paper analyzes the numerical feature of the observed signal and proves that the inner product under Euclidean space can be used to classify the observed signal in the situation. Besides, the paper gives a method for determining the number of source signal and introduces an estimation algorithm for mixing-matrix using inner products in the Euclidean space combined with the density of interval point. The algorithm can effectively identify the number of source signals and can realize the estimation of mixing-matrix. The experimental results show the algorithm is feasible.\",\"PeriodicalId\":294394,\"journal\":{\"name\":\"2012 Eighth International Conference on Computational Intelligence and Security\",\"volume\":\"361 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Eighth International Conference on Computational Intelligence and Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIS.2012.90\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Eighth International Conference on Computational Intelligence and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS.2012.90","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

根据3个观测信号和4个信号源的欠定盲信号分离,提出了一种估计混合矩阵的新算法。根据SCA模型的几何意义,分析了观测信号的数值特征,证明了欧氏空间下的内积可以对该情况下的观测信号进行分类。此外,给出了一种确定源信号个数的方法,并介绍了一种利用欧氏空间内积结合区间点密度估计混合矩阵的算法。该算法能有效地识别源信号的数量,并能实现混合矩阵的估计。实验结果表明,该算法是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Algorithm to Estimate Mixing-Matrix of Underdetermined Blind Signal Separation
The paper puts forward a new algorithm to estimate mixing-matrix according to the underdetermined blind signal separation of 3 observed signals and 4 sources. According to the geometric meaning of the SCA model, the paper analyzes the numerical feature of the observed signal and proves that the inner product under Euclidean space can be used to classify the observed signal in the situation. Besides, the paper gives a method for determining the number of source signal and introduces an estimation algorithm for mixing-matrix using inner products in the Euclidean space combined with the density of interval point. The algorithm can effectively identify the number of source signals and can realize the estimation of mixing-matrix. The experimental results show the algorithm is feasible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信