DiPerF:一个自动化的分布式性能测试框架

C. Dumitrescu, I. Raicu, M. Ripeanu, Ian T Foster
{"title":"DiPerF:一个自动化的分布式性能测试框架","authors":"C. Dumitrescu, I. Raicu, M. Ripeanu, Ian T Foster","doi":"10.1109/GRID.2004.21","DOIUrl":null,"url":null,"abstract":"We present DiPerF, a distributed performance-testing framework, aimed at simplifying and automating service performance evaluation. DiPerF coordinates a pool of machines that test a target service, collects and aggregates performance metrics, and generates performance statistics. The aggregate data collected provide information on service throughput, on service fairness' when serving multiple clients concurrently, and on the impact of network latency on service performance. Furthermore, using this data, it is possible to build predictive models that estimate a service performance given the service load. We have tested DiPerF on 100+machines on two testbeds, Grid3 and PlanetLab, and explored the performance of job submission services (pre-WS GRAM and WS GRAM) included with Globus Toolkit/spl reg/ 3.2.","PeriodicalId":335281,"journal":{"name":"Fifth IEEE/ACM International Workshop on Grid Computing","volume":"138 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"71","resultStr":"{\"title\":\"DiPerF: an automated distributed performance testing framework\",\"authors\":\"C. Dumitrescu, I. Raicu, M. Ripeanu, Ian T Foster\",\"doi\":\"10.1109/GRID.2004.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present DiPerF, a distributed performance-testing framework, aimed at simplifying and automating service performance evaluation. DiPerF coordinates a pool of machines that test a target service, collects and aggregates performance metrics, and generates performance statistics. The aggregate data collected provide information on service throughput, on service fairness' when serving multiple clients concurrently, and on the impact of network latency on service performance. Furthermore, using this data, it is possible to build predictive models that estimate a service performance given the service load. We have tested DiPerF on 100+machines on two testbeds, Grid3 and PlanetLab, and explored the performance of job submission services (pre-WS GRAM and WS GRAM) included with Globus Toolkit/spl reg/ 3.2.\",\"PeriodicalId\":335281,\"journal\":{\"name\":\"Fifth IEEE/ACM International Workshop on Grid Computing\",\"volume\":\"138 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"71\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fifth IEEE/ACM International Workshop on Grid Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GRID.2004.21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifth IEEE/ACM International Workshop on Grid Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GRID.2004.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 71

摘要

我们提出了DiPerF,一个分布式性能测试框架,旨在简化和自动化服务性能评估。DiPerF协调测试目标服务的机器池,收集和汇总性能指标,并生成性能统计数据。收集的汇总数据提供了有关服务吞吐量、同时服务多个客户机时的服务公平性以及网络延迟对服务性能的影响的信息。此外,使用这些数据,可以构建预测模型来估计给定服务负载的服务性能。我们已经在Grid3和PlanetLab两个测试平台上的100多台机器上测试了DiPerF,并探索了Globus Toolkit/spl reg/ 3.2中包含的作业提交服务(pre-WS GRAM和WS GRAM)的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DiPerF: an automated distributed performance testing framework
We present DiPerF, a distributed performance-testing framework, aimed at simplifying and automating service performance evaluation. DiPerF coordinates a pool of machines that test a target service, collects and aggregates performance metrics, and generates performance statistics. The aggregate data collected provide information on service throughput, on service fairness' when serving multiple clients concurrently, and on the impact of network latency on service performance. Furthermore, using this data, it is possible to build predictive models that estimate a service performance given the service load. We have tested DiPerF on 100+machines on two testbeds, Grid3 and PlanetLab, and explored the performance of job submission services (pre-WS GRAM and WS GRAM) included with Globus Toolkit/spl reg/ 3.2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信