{"title":"基于机器学习和数据挖掘算法的皮肤病分类","authors":"Dr V Vasudha Rani, G. Vasavi, B. Maram","doi":"10.1109/iSSSC56467.2022.10051620","DOIUrl":null,"url":null,"abstract":"Skin is an extraordinary human structure. As a result of inherited traits and environmental variables, skin conditions are the most prevalent worldwide. People frequently neglect the effects of skin diseases in their initial stages. It commonly experienced both well-known and rare diseases. Identifying skin diseases and their kinds in the medical field is a very difficult process. It can be very challenging to identify the precise type of disease because of the intricacy of human skin complexion as well as the visual proximity effect of the conditions. As a result, it's critical to identify and categorize skin diseases as soon as they are discovered. The most ambiguous and challenging field in science is therefore the detection of human skin diseases. For segmentation and diagnosis, ML techniques are frequently employed in the biomedical industry. These techniques decide using features extracted from photos as their input. To obtain high classification accuracy, it is crucial to select appropriate feature extraction techniques along with appropriate Machine Learning (ML) approaches. The classification of skin diseases is discussed in this analysis using ensemble data mining approaches and ML algorithms. In this method, four distinct ML techniques are used to categorize the various kinds of diseases while ensemble approaches are used to increase the classification reliability of skin diseases.","PeriodicalId":334645,"journal":{"name":"2022 IEEE 2nd International Symposium on Sustainable Energy, Signal Processing and Cyber Security (iSSSC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Skin Disease Classification Using Machine Learning and Data Mining Algorithms\",\"authors\":\"Dr V Vasudha Rani, G. Vasavi, B. Maram\",\"doi\":\"10.1109/iSSSC56467.2022.10051620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Skin is an extraordinary human structure. As a result of inherited traits and environmental variables, skin conditions are the most prevalent worldwide. People frequently neglect the effects of skin diseases in their initial stages. It commonly experienced both well-known and rare diseases. Identifying skin diseases and their kinds in the medical field is a very difficult process. It can be very challenging to identify the precise type of disease because of the intricacy of human skin complexion as well as the visual proximity effect of the conditions. As a result, it's critical to identify and categorize skin diseases as soon as they are discovered. The most ambiguous and challenging field in science is therefore the detection of human skin diseases. For segmentation and diagnosis, ML techniques are frequently employed in the biomedical industry. These techniques decide using features extracted from photos as their input. To obtain high classification accuracy, it is crucial to select appropriate feature extraction techniques along with appropriate Machine Learning (ML) approaches. The classification of skin diseases is discussed in this analysis using ensemble data mining approaches and ML algorithms. In this method, four distinct ML techniques are used to categorize the various kinds of diseases while ensemble approaches are used to increase the classification reliability of skin diseases.\",\"PeriodicalId\":334645,\"journal\":{\"name\":\"2022 IEEE 2nd International Symposium on Sustainable Energy, Signal Processing and Cyber Security (iSSSC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 2nd International Symposium on Sustainable Energy, Signal Processing and Cyber Security (iSSSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iSSSC56467.2022.10051620\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 2nd International Symposium on Sustainable Energy, Signal Processing and Cyber Security (iSSSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iSSSC56467.2022.10051620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Skin Disease Classification Using Machine Learning and Data Mining Algorithms
Skin is an extraordinary human structure. As a result of inherited traits and environmental variables, skin conditions are the most prevalent worldwide. People frequently neglect the effects of skin diseases in their initial stages. It commonly experienced both well-known and rare diseases. Identifying skin diseases and their kinds in the medical field is a very difficult process. It can be very challenging to identify the precise type of disease because of the intricacy of human skin complexion as well as the visual proximity effect of the conditions. As a result, it's critical to identify and categorize skin diseases as soon as they are discovered. The most ambiguous and challenging field in science is therefore the detection of human skin diseases. For segmentation and diagnosis, ML techniques are frequently employed in the biomedical industry. These techniques decide using features extracted from photos as their input. To obtain high classification accuracy, it is crucial to select appropriate feature extraction techniques along with appropriate Machine Learning (ML) approaches. The classification of skin diseases is discussed in this analysis using ensemble data mining approaches and ML algorithms. In this method, four distinct ML techniques are used to categorize the various kinds of diseases while ensemble approaches are used to increase the classification reliability of skin diseases.