临床试验的样本量——挑战和方法

A. Tomski, Barbara Gorzawska
{"title":"临床试验的样本量——挑战和方法","authors":"A. Tomski, Barbara Gorzawska","doi":"10.59139/ps.2022.04.2","DOIUrl":null,"url":null,"abstract":"Sample size estimation is a necessary and crucial step in clinical trial research. Statistical requirements, limited patient availability and high financial risk of a clinical trial necessitate the proper calculation of this measure. The aim of this paper is to discuss the reasons why the estimation of the sample size is important and, based on the obtained results, to show how this process may be completed in selected cases. Stochastic simulations based on the Monte Carlo methods approach are applied. Therefore, new challenges facing this area of research are mentioned.","PeriodicalId":357447,"journal":{"name":"Przegląd Statystyczny","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sample size in clinical trials – challenges and approaches\",\"authors\":\"A. Tomski, Barbara Gorzawska\",\"doi\":\"10.59139/ps.2022.04.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sample size estimation is a necessary and crucial step in clinical trial research. Statistical requirements, limited patient availability and high financial risk of a clinical trial necessitate the proper calculation of this measure. The aim of this paper is to discuss the reasons why the estimation of the sample size is important and, based on the obtained results, to show how this process may be completed in selected cases. Stochastic simulations based on the Monte Carlo methods approach are applied. Therefore, new challenges facing this area of research are mentioned.\",\"PeriodicalId\":357447,\"journal\":{\"name\":\"Przegląd Statystyczny\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Przegląd Statystyczny\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59139/ps.2022.04.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Przegląd Statystyczny","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59139/ps.2022.04.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

样本量估计是临床试验研究中必要而关键的步骤。统计要求,有限的患者可用性和临床试验的高财务风险需要正确计算这一措施。本文的目的是讨论为什么估计样本量是重要的原因,并根据所获得的结果,显示如何在选定的情况下完成这一过程。采用蒙特卡罗方法进行随机模拟。因此,本文提到了这一研究领域面临的新挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sample size in clinical trials – challenges and approaches
Sample size estimation is a necessary and crucial step in clinical trial research. Statistical requirements, limited patient availability and high financial risk of a clinical trial necessitate the proper calculation of this measure. The aim of this paper is to discuss the reasons why the estimation of the sample size is important and, based on the obtained results, to show how this process may be completed in selected cases. Stochastic simulations based on the Monte Carlo methods approach are applied. Therefore, new challenges facing this area of research are mentioned.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信