基于模型的主权违约估计

I. Gumus, Junko Koeda
{"title":"基于模型的主权违约估计","authors":"I. Gumus, Junko Koeda","doi":"10.2139/ssrn.3056539","DOIUrl":null,"url":null,"abstract":"We estimate a canonical sovereign default model from Arellano (2008) for Argentina via maximum simulated likelihood estimation to understand how well it performs in terms of predicting default events. The estimated model accounts for the overall default patterns of Argentina and closely matches the default data. Out-of-sample forecasting shows that the model performs better than a logit model in predicting the onset of default events. In terms of the business cycle statistics, the findings of the model are consistent with the data and Arellano (2008), with some caveats.","PeriodicalId":366245,"journal":{"name":"PSN: Debt Crises (Topic)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Model-Based Estimation of Sovereign Default\",\"authors\":\"I. Gumus, Junko Koeda\",\"doi\":\"10.2139/ssrn.3056539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We estimate a canonical sovereign default model from Arellano (2008) for Argentina via maximum simulated likelihood estimation to understand how well it performs in terms of predicting default events. The estimated model accounts for the overall default patterns of Argentina and closely matches the default data. Out-of-sample forecasting shows that the model performs better than a logit model in predicting the onset of default events. In terms of the business cycle statistics, the findings of the model are consistent with the data and Arellano (2008), with some caveats.\",\"PeriodicalId\":366245,\"journal\":{\"name\":\"PSN: Debt Crises (Topic)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PSN: Debt Crises (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3056539\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PSN: Debt Crises (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3056539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们通过最大模拟似然估计来估计Arellano(2008)对阿根廷的典型主权违约模型,以了解它在预测违约事件方面的表现如何。估计的模型解释了阿根廷的总体违约模式,并与违约数据密切匹配。样本外预测表明,该模型在预测违约事件发生方面优于logit模型。在商业周期统计方面,模型的发现与数据和Arellano(2008)一致,但有一些警告。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model-Based Estimation of Sovereign Default
We estimate a canonical sovereign default model from Arellano (2008) for Argentina via maximum simulated likelihood estimation to understand how well it performs in terms of predicting default events. The estimated model accounts for the overall default patterns of Argentina and closely matches the default data. Out-of-sample forecasting shows that the model performs better than a logit model in predicting the onset of default events. In terms of the business cycle statistics, the findings of the model are consistent with the data and Arellano (2008), with some caveats.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信