{"title":"噪声语音鲁棒情绪识别的无监督帧选择技术","authors":"Meghna Pandharipande, Rupayan Chakraborty, Ashish Panda, Sunil Kumar Kopparapu","doi":"10.23919/EUSIPCO.2018.8553202","DOIUrl":null,"url":null,"abstract":"Automatic emotion recognition with good accuracy has been demonstrated for clean speech, but the performance deteriorates quickly when speech is contaminated with noise. In this paper, we propose a front-end voice activity detector (VAD)-based unsupervised method to select the frames with a relatively better signal to noise ratio (SNR) in the spoken utterances. Then we extract a large number of statistical features from low-level audio descriptors for the purpose of emotion recognition by using state-of-art classifiers. Extensive experimentation on two standard databases contaminated with 5 types of noise (Babble, F-16, Factory, Volvo, and HF-channel) from the Noisex-92 noise database at 5 different SNR levels (0, 5, 10, 15, 20dB) have been carried out. While performing all experiments to classify emotions both at the categorical and the dimensional spaces, the proposed technique outperforms a Recurrent Neural Network (RNN)-based VAD across all 5 types and levels of noises, and for both the databases.","PeriodicalId":303069,"journal":{"name":"2018 26th European Signal Processing Conference (EUSIPCO)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"An Unsupervised frame Selection Technique for Robust Emotion Recognition in Noisy Speech\",\"authors\":\"Meghna Pandharipande, Rupayan Chakraborty, Ashish Panda, Sunil Kumar Kopparapu\",\"doi\":\"10.23919/EUSIPCO.2018.8553202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic emotion recognition with good accuracy has been demonstrated for clean speech, but the performance deteriorates quickly when speech is contaminated with noise. In this paper, we propose a front-end voice activity detector (VAD)-based unsupervised method to select the frames with a relatively better signal to noise ratio (SNR) in the spoken utterances. Then we extract a large number of statistical features from low-level audio descriptors for the purpose of emotion recognition by using state-of-art classifiers. Extensive experimentation on two standard databases contaminated with 5 types of noise (Babble, F-16, Factory, Volvo, and HF-channel) from the Noisex-92 noise database at 5 different SNR levels (0, 5, 10, 15, 20dB) have been carried out. While performing all experiments to classify emotions both at the categorical and the dimensional spaces, the proposed technique outperforms a Recurrent Neural Network (RNN)-based VAD across all 5 types and levels of noises, and for both the databases.\",\"PeriodicalId\":303069,\"journal\":{\"name\":\"2018 26th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 26th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/EUSIPCO.2018.8553202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 26th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2018.8553202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Unsupervised frame Selection Technique for Robust Emotion Recognition in Noisy Speech
Automatic emotion recognition with good accuracy has been demonstrated for clean speech, but the performance deteriorates quickly when speech is contaminated with noise. In this paper, we propose a front-end voice activity detector (VAD)-based unsupervised method to select the frames with a relatively better signal to noise ratio (SNR) in the spoken utterances. Then we extract a large number of statistical features from low-level audio descriptors for the purpose of emotion recognition by using state-of-art classifiers. Extensive experimentation on two standard databases contaminated with 5 types of noise (Babble, F-16, Factory, Volvo, and HF-channel) from the Noisex-92 noise database at 5 different SNR levels (0, 5, 10, 15, 20dB) have been carried out. While performing all experiments to classify emotions both at the categorical and the dimensional spaces, the proposed technique outperforms a Recurrent Neural Network (RNN)-based VAD across all 5 types and levels of noises, and for both the databases.