基于基因本体论的代谢途径注释分析与分类

A. Cakmak
{"title":"基于基因本体论的代谢途径注释分析与分类","authors":"A. Cakmak","doi":"10.1109/SSDBM.2007.35","DOIUrl":null,"url":null,"abstract":"Functional characterizations of pathways provide new opportunities in defining, understanding, and comparing existing biological pathways, and in helping discover new ones in different organisms. In this paper, we present and evaluate computational techniques for categorizing pathways, based upon the Gene Ontology (GO) annotations of enzymes within metabolic pathways. Our approach is to use the notion of functionality templates, GO-functional graphs of pathways. Pathway categorization is then achieved through learning models built on different characteristics of functionality templates. We have experimentally evaluated the accuracy of automated pathway categorization with respect to different learning models and their parameters. Using KEGG metabolic pathways, the pathway categorization tool reaches to 90% and higher accuracy.","PeriodicalId":122925,"journal":{"name":"19th International Conference on Scientific and Statistical Database Management (SSDBM 2007)","volume":"132 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Gene Ontology-Based Annotation Analysis and Categorization of Metabolic Pathways\",\"authors\":\"A. Cakmak\",\"doi\":\"10.1109/SSDBM.2007.35\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Functional characterizations of pathways provide new opportunities in defining, understanding, and comparing existing biological pathways, and in helping discover new ones in different organisms. In this paper, we present and evaluate computational techniques for categorizing pathways, based upon the Gene Ontology (GO) annotations of enzymes within metabolic pathways. Our approach is to use the notion of functionality templates, GO-functional graphs of pathways. Pathway categorization is then achieved through learning models built on different characteristics of functionality templates. We have experimentally evaluated the accuracy of automated pathway categorization with respect to different learning models and their parameters. Using KEGG metabolic pathways, the pathway categorization tool reaches to 90% and higher accuracy.\",\"PeriodicalId\":122925,\"journal\":{\"name\":\"19th International Conference on Scientific and Statistical Database Management (SSDBM 2007)\",\"volume\":\"132 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"19th International Conference on Scientific and Statistical Database Management (SSDBM 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSDBM.2007.35\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"19th International Conference on Scientific and Statistical Database Management (SSDBM 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSDBM.2007.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

途径的功能表征为定义、理解和比较现有的生物学途径提供了新的机会,并有助于在不同的生物体中发现新的途径。在本文中,我们提出并评估了基于代谢途径中酶的基因本体(GO)注释的分类途径的计算技术。我们的方法是使用功能模板的概念,go函数图的路径。然后通过建立在功能模板不同特征上的学习模型来实现路径分类。我们通过实验评估了不同学习模型及其参数下自动路径分类的准确性。使用KEGG代谢途径,途径分类工具达到90%,准确率更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gene Ontology-Based Annotation Analysis and Categorization of Metabolic Pathways
Functional characterizations of pathways provide new opportunities in defining, understanding, and comparing existing biological pathways, and in helping discover new ones in different organisms. In this paper, we present and evaluate computational techniques for categorizing pathways, based upon the Gene Ontology (GO) annotations of enzymes within metabolic pathways. Our approach is to use the notion of functionality templates, GO-functional graphs of pathways. Pathway categorization is then achieved through learning models built on different characteristics of functionality templates. We have experimentally evaluated the accuracy of automated pathway categorization with respect to different learning models and their parameters. Using KEGG metabolic pathways, the pathway categorization tool reaches to 90% and higher accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信