{"title":"在图形硬件上的实时多视角渲染","authors":"Xian Hou, Li-Yi Wei, H. Shum, B. Guo","doi":"10.2312/EGWR/EGSR06/093-102","DOIUrl":null,"url":null,"abstract":"Multi-perspective rendering has a variety of applications; examples include lens refraction, curved mirror re- flection, caustics, as well depiction and visualization. However, multi-perspective rendering is not yet practical on polygonal graphics hardware, which so far has utilized mostly single-perspective (pin-hole or orthographic) projections.\n In this paper, we present a methodology for real-time multi-perspective rendering on polygonal graphics hardware. Our approach approximates a general multi-perspective projection surface (such as a curved mirror and lens) via a piecewise-linear triangle mesh, upon which each triangle is a simple multi-perspective camera, parameterized by three rays at triangle vertices. We derive analytic formula showing that each triangle projection can be implemented as a pair of vertex and fragment programs on programmable graphics hardware. We demonstrate real-time performance of a variety of applications enabled by our technique, including reflection, refraction, caustics, and visualization.","PeriodicalId":363391,"journal":{"name":"Eurographics Symposium on Rendering","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Real-time multi-perspective rendering on graphics hardware\",\"authors\":\"Xian Hou, Li-Yi Wei, H. Shum, B. Guo\",\"doi\":\"10.2312/EGWR/EGSR06/093-102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-perspective rendering has a variety of applications; examples include lens refraction, curved mirror re- flection, caustics, as well depiction and visualization. However, multi-perspective rendering is not yet practical on polygonal graphics hardware, which so far has utilized mostly single-perspective (pin-hole or orthographic) projections.\\n In this paper, we present a methodology for real-time multi-perspective rendering on polygonal graphics hardware. Our approach approximates a general multi-perspective projection surface (such as a curved mirror and lens) via a piecewise-linear triangle mesh, upon which each triangle is a simple multi-perspective camera, parameterized by three rays at triangle vertices. We derive analytic formula showing that each triangle projection can be implemented as a pair of vertex and fragment programs on programmable graphics hardware. We demonstrate real-time performance of a variety of applications enabled by our technique, including reflection, refraction, caustics, and visualization.\",\"PeriodicalId\":363391,\"journal\":{\"name\":\"Eurographics Symposium on Rendering\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eurographics Symposium on Rendering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2312/EGWR/EGSR06/093-102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurographics Symposium on Rendering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/EGWR/EGSR06/093-102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Real-time multi-perspective rendering on graphics hardware
Multi-perspective rendering has a variety of applications; examples include lens refraction, curved mirror re- flection, caustics, as well depiction and visualization. However, multi-perspective rendering is not yet practical on polygonal graphics hardware, which so far has utilized mostly single-perspective (pin-hole or orthographic) projections.
In this paper, we present a methodology for real-time multi-perspective rendering on polygonal graphics hardware. Our approach approximates a general multi-perspective projection surface (such as a curved mirror and lens) via a piecewise-linear triangle mesh, upon which each triangle is a simple multi-perspective camera, parameterized by three rays at triangle vertices. We derive analytic formula showing that each triangle projection can be implemented as a pair of vertex and fragment programs on programmable graphics hardware. We demonstrate real-time performance of a variety of applications enabled by our technique, including reflection, refraction, caustics, and visualization.