关于由某些积分变换定义的函数的凸性

M. Anbu Durai, R. Parvatham
{"title":"关于由某些积分变换定义的函数的凸性","authors":"M. Anbu Durai, R. Parvatham","doi":"10.1080/02781070500032812","DOIUrl":null,"url":null,"abstract":"For real-valued, monotonically decreasing on [0, 1] satisfying the conditions as t→0+ and increasing on (0, 1), we obtain that for a suitable f (z), where Using this result we obtain several other general results. We determine the least value of β so that for g analytic in and for the functions and are convex of order γ. Here 2F 1 is the Gaussian hypergeometric function. We have extended these results to functions of the form Corresponding starlikeness result is obtained for such convex combinations.","PeriodicalId":272508,"journal":{"name":"Complex Variables, Theory and Application: An International Journal","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On order of convexity of functions defined by certain integral transforms\",\"authors\":\"M. Anbu Durai, R. Parvatham\",\"doi\":\"10.1080/02781070500032812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For real-valued, monotonically decreasing on [0, 1] satisfying the conditions as t→0+ and increasing on (0, 1), we obtain that for a suitable f (z), where Using this result we obtain several other general results. We determine the least value of β so that for g analytic in and for the functions and are convex of order γ. Here 2F 1 is the Gaussian hypergeometric function. We have extended these results to functions of the form Corresponding starlikeness result is obtained for such convex combinations.\",\"PeriodicalId\":272508,\"journal\":{\"name\":\"Complex Variables, Theory and Application: An International Journal\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex Variables, Theory and Application: An International Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/02781070500032812\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Variables, Theory and Application: An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/02781070500032812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

对于满足t→0+条件的实值,在[0,1]上单调递减,在(0,1)上单调递增,得到了合适的f (z)的单调递减,其中利用这个结果得到了其他几个一般结果。我们确定了β的最小值,使得对于g解析,对于函数和是γ阶的凸。这里2f1是高斯超几何函数。我们将这些结果推广到形式的函数上,得到了这种凸组合的相应的星形结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On order of convexity of functions defined by certain integral transforms
For real-valued, monotonically decreasing on [0, 1] satisfying the conditions as t→0+ and increasing on (0, 1), we obtain that for a suitable f (z), where Using this result we obtain several other general results. We determine the least value of β so that for g analytic in and for the functions and are convex of order γ. Here 2F 1 is the Gaussian hypergeometric function. We have extended these results to functions of the form Corresponding starlikeness result is obtained for such convex combinations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信