钻石矩阵幂核

Emil Vatai, U. Singhal, R. Suda
{"title":"钻石矩阵幂核","authors":"Emil Vatai, U. Singhal, R. Suda","doi":"10.1145/3368474.3368494","DOIUrl":null,"url":null,"abstract":"Matrix powers kernel calculates the vectors Akv, for k = 1, 2,..., m and they are the heart of various scientific computations, including communication avoiding iterative solvers. In this paper we propose diamond matrix powers kernel - DMPK, which has the purpose to apply the \"diamond tiling\" stencil algorithm to general matrices. It can also be considered as an extension of the PA1 and PA2 algorithms, introduced by Demmel et al. Our approach enables us to control the balance between the amount of communication avoidance and redundant computation inherently present in communication avoiding algorithms. We present a proof of concept implementation of the algorithm using MPI routines. The experiments we performed show that the control of the amount of computation and communication is achievable, and with more thorough optimisations, DMPK is a promising alternative to existing MPK approaches.","PeriodicalId":314778,"journal":{"name":"Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Diamond matrix powers kernels\",\"authors\":\"Emil Vatai, U. Singhal, R. Suda\",\"doi\":\"10.1145/3368474.3368494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Matrix powers kernel calculates the vectors Akv, for k = 1, 2,..., m and they are the heart of various scientific computations, including communication avoiding iterative solvers. In this paper we propose diamond matrix powers kernel - DMPK, which has the purpose to apply the \\\"diamond tiling\\\" stencil algorithm to general matrices. It can also be considered as an extension of the PA1 and PA2 algorithms, introduced by Demmel et al. Our approach enables us to control the balance between the amount of communication avoidance and redundant computation inherently present in communication avoiding algorithms. We present a proof of concept implementation of the algorithm using MPI routines. The experiments we performed show that the control of the amount of computation and communication is achievable, and with more thorough optimisations, DMPK is a promising alternative to existing MPK approaches.\",\"PeriodicalId\":314778,\"journal\":{\"name\":\"Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3368474.3368494\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3368474.3368494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

矩阵幂核计算向量Akv,对于k = 1,2,…,它们是各种科学计算的核心,包括通信避免迭代求解器。本文提出了菱形矩阵幂核- DMPK,目的是将“菱形平铺”模板算法应用于一般矩阵。它也可以被认为是由Demmel等人引入的PA1和PA2算法的扩展。我们的方法使我们能够控制通信避免算法中固有的通信避免和冗余计算之间的平衡。我们提出了使用MPI例程实现该算法的概念证明。我们进行的实验表明,计算量和通信量的控制是可以实现的,并且通过更彻底的优化,DMPK是现有MPK方法的一个有前途的替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diamond matrix powers kernels
Matrix powers kernel calculates the vectors Akv, for k = 1, 2,..., m and they are the heart of various scientific computations, including communication avoiding iterative solvers. In this paper we propose diamond matrix powers kernel - DMPK, which has the purpose to apply the "diamond tiling" stencil algorithm to general matrices. It can also be considered as an extension of the PA1 and PA2 algorithms, introduced by Demmel et al. Our approach enables us to control the balance between the amount of communication avoidance and redundant computation inherently present in communication avoiding algorithms. We present a proof of concept implementation of the algorithm using MPI routines. The experiments we performed show that the control of the amount of computation and communication is achievable, and with more thorough optimisations, DMPK is a promising alternative to existing MPK approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信