组合

A. Alenitsyn, Eugene I. Butikov, A. Kondratyev
{"title":"组合","authors":"A. Alenitsyn, Eugene I. Butikov, A. Kondratyev","doi":"10.1142/9789811202582_0002","DOIUrl":null,"url":null,"abstract":". This is the first contribution of a sequence of papers introducing the notions of s -weak order and s -permutahedra, certain discrete objects that are indexed by a sequence of non-negative integers s . In this first paper, we concentrate purely on the combinatorics and lattice structure of the s -weak order, a partial order on certain decreasing trees which generalizes the classical weak order on permutations. In particular, we show that the s -weak order is a semidistributive and congruence uniform lattice, generalizing known results for the classical weak order on permutations. Restricting the s -weak order to certain trees gives rise to the s -Tamari lattice, a sublattice which generalizes the classical Tamari lattice. We show that the s -Tamari lattice can be obtained as a quotient lattice of the s -weak order when s has no zeros, and show that the s -Tamari lattices (for arbitrary s ) are isomorphic to the ν -Tamari lattices of Pr´eville-Ratelle and Viennot. The underlying geometric structure of the s -weak order will be studied in a sequel of this paper, where we introduce the notion of s -permutahedra.","PeriodicalId":124220,"journal":{"name":"Concise Handbook of Mathematics and Physics","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combinatorics\",\"authors\":\"A. Alenitsyn, Eugene I. Butikov, A. Kondratyev\",\"doi\":\"10.1142/9789811202582_0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". This is the first contribution of a sequence of papers introducing the notions of s -weak order and s -permutahedra, certain discrete objects that are indexed by a sequence of non-negative integers s . In this first paper, we concentrate purely on the combinatorics and lattice structure of the s -weak order, a partial order on certain decreasing trees which generalizes the classical weak order on permutations. In particular, we show that the s -weak order is a semidistributive and congruence uniform lattice, generalizing known results for the classical weak order on permutations. Restricting the s -weak order to certain trees gives rise to the s -Tamari lattice, a sublattice which generalizes the classical Tamari lattice. We show that the s -Tamari lattice can be obtained as a quotient lattice of the s -weak order when s has no zeros, and show that the s -Tamari lattices (for arbitrary s ) are isomorphic to the ν -Tamari lattices of Pr´eville-Ratelle and Viennot. The underlying geometric structure of the s -weak order will be studied in a sequel of this paper, where we introduce the notion of s -permutahedra.\",\"PeriodicalId\":124220,\"journal\":{\"name\":\"Concise Handbook of Mathematics and Physics\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Concise Handbook of Mathematics and Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/9789811202582_0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concise Handbook of Mathematics and Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789811202582_0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

. 这是一系列介绍s -弱序和s -置换面体概念的论文的第一个贡献,s -弱序和s -置换面体是由非负整数s序列索引的某些离散对象。在第一篇论文中,我们主要讨论了s -弱序的组合和晶格结构,s -弱序是在某些递减树上的一种偏序,它推广了置换上的经典弱序。特别地,我们证明了s -弱序是一个半分布的同余一致格,推广了关于置换的经典弱序的已知结果。将s -弱阶限定在某些树上,得到了s -Tamari格,它是经典Tamari格的推广子格。我们证明了当s没有零时s -Tamari格可以作为s -弱阶商格得到,并证明了s -Tamari格(对于任意s)与Pr´eville-Ratelle和Viennot的ν -Tamari格同构。本文将在后续文章中讨论s -弱阶的基本几何结构,并引入s -置换面体的概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combinatorics
. This is the first contribution of a sequence of papers introducing the notions of s -weak order and s -permutahedra, certain discrete objects that are indexed by a sequence of non-negative integers s . In this first paper, we concentrate purely on the combinatorics and lattice structure of the s -weak order, a partial order on certain decreasing trees which generalizes the classical weak order on permutations. In particular, we show that the s -weak order is a semidistributive and congruence uniform lattice, generalizing known results for the classical weak order on permutations. Restricting the s -weak order to certain trees gives rise to the s -Tamari lattice, a sublattice which generalizes the classical Tamari lattice. We show that the s -Tamari lattice can be obtained as a quotient lattice of the s -weak order when s has no zeros, and show that the s -Tamari lattices (for arbitrary s ) are isomorphic to the ν -Tamari lattices of Pr´eville-Ratelle and Viennot. The underlying geometric structure of the s -weak order will be studied in a sequel of this paper, where we introduce the notion of s -permutahedra.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信