求解多智能体马尔可夫博弈中寻求合作稳定性的lp强纳什均衡

Kristal K. Trejo, J. Clempner, A. Poznyak
{"title":"求解多智能体马尔可夫博弈中寻求合作稳定性的lp强纳什均衡","authors":"Kristal K. Trejo, J. Clempner, A. Poznyak","doi":"10.1109/ICEEE.2015.7357926","DOIUrl":null,"url":null,"abstract":"The notion of collaboration implies that related agents interact with each other looking for cooperative stability. This notion consents agents to select optimal strategies and to condition their own behavior on the behavior of others in a strategic forward looking manner. In game theory the collective stability is a special case of the Nash equilibrium called strong Nash equilibrium. In this paper we present a novel method for computing the Strong Lp-Nash equilibrium in case of a metric state space for a class of time-discrete ergodic controllable Markov chains games. We first present a general solution for the Lp-norm for computing the Strong Lp-Nash equilibrium and then, we suggest an explicit solution involving the norms L1 and L2. For solving the problem we use the extraproximal method. We employ the Tikhonov's regularization method to ensure the convergence of the cost-functions to a unique equilibrium point. The method converges in exponential time to a unique Strong Lp-Nash equilibrium. A game theory example illustrates the main results.","PeriodicalId":285783,"journal":{"name":"2015 12th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Computing the Lp-strong nash equilibrium looking for cooperative stability in multiple agents markov games\",\"authors\":\"Kristal K. Trejo, J. Clempner, A. Poznyak\",\"doi\":\"10.1109/ICEEE.2015.7357926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The notion of collaboration implies that related agents interact with each other looking for cooperative stability. This notion consents agents to select optimal strategies and to condition their own behavior on the behavior of others in a strategic forward looking manner. In game theory the collective stability is a special case of the Nash equilibrium called strong Nash equilibrium. In this paper we present a novel method for computing the Strong Lp-Nash equilibrium in case of a metric state space for a class of time-discrete ergodic controllable Markov chains games. We first present a general solution for the Lp-norm for computing the Strong Lp-Nash equilibrium and then, we suggest an explicit solution involving the norms L1 and L2. For solving the problem we use the extraproximal method. We employ the Tikhonov's regularization method to ensure the convergence of the cost-functions to a unique equilibrium point. The method converges in exponential time to a unique Strong Lp-Nash equilibrium. A game theory example illustrates the main results.\",\"PeriodicalId\":285783,\"journal\":{\"name\":\"2015 12th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)\",\"volume\":\"105 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 12th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEEE.2015.7357926\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 12th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEE.2015.7357926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

协作的概念意味着相关的代理之间相互作用,寻求合作的稳定性。这个概念允许代理人选择最优策略,并以战略前瞻性的方式将自己的行为约束于他人的行为。在博弈论中,集体稳定是纳什均衡的一种特殊情况,称为强纳什均衡。本文给出了一类时间离散遍历可控马尔可夫链对策在度量状态空间下的强lp -纳什均衡的一种新方法。我们首先给出了计算强Lp-Nash均衡的lp -范数的一般解,然后,我们提出了一个涉及范数L1和L2的显式解。为了解决这个问题,我们使用了近端外法。我们采用Tikhonov正则化方法来保证代价函数收敛到一个唯一的平衡点。该方法在指数时间内收敛于唯一的强Lp-Nash均衡。一个博弈论的例子说明了主要的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computing the Lp-strong nash equilibrium looking for cooperative stability in multiple agents markov games
The notion of collaboration implies that related agents interact with each other looking for cooperative stability. This notion consents agents to select optimal strategies and to condition their own behavior on the behavior of others in a strategic forward looking manner. In game theory the collective stability is a special case of the Nash equilibrium called strong Nash equilibrium. In this paper we present a novel method for computing the Strong Lp-Nash equilibrium in case of a metric state space for a class of time-discrete ergodic controllable Markov chains games. We first present a general solution for the Lp-norm for computing the Strong Lp-Nash equilibrium and then, we suggest an explicit solution involving the norms L1 and L2. For solving the problem we use the extraproximal method. We employ the Tikhonov's regularization method to ensure the convergence of the cost-functions to a unique equilibrium point. The method converges in exponential time to a unique Strong Lp-Nash equilibrium. A game theory example illustrates the main results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信