利用模糊知识库自动发现MR血管造影图像中的Willis环

Syoji Kobashi, K. Kondo, Y. Hata
{"title":"利用模糊知识库自动发现MR血管造影图像中的Willis环","authors":"Syoji Kobashi, K. Kondo, Y. Hata","doi":"10.1109/ISMVL.2003.1201389","DOIUrl":null,"url":null,"abstract":"This paper proposes an automated method for finding the Willis ring from the human brain MR angiography (MRA) images, which can depict cerebral arteries with high contrast. It strongly helps screening of unruptured cerebral aneurysm in MRA images. The proposed method consists of (1) segmenting cerebral arteries from MRA images, (2) skeletonization of artery trees, and detection of furcations, and (3) finding furcations in the Willis ring using genetic algorithm (GA) based on fuzzy knowledge base (fuzzy KB). Fuzzy KB gives knowledge about the Willis ring that consists of arteries and furcations. GA finds a set of furcations by optimizing an objective function. The objective function used by GA estimates fitness of a set of furcations using fuzzy KB. Our method was first applied to a 3-D phantom data generated by computer simulation. The result demonstrated that our method detected all suitable furcations correctly. Next, it was applied to MRA volume data of two normal healthy volunteers. In any cases, the proposed method detected desired all furcations in the Willis ring.","PeriodicalId":434515,"journal":{"name":"33rd International Symposium on Multiple-Valued Logic, 2003. Proceedings.","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Automated finding of the Willis ring in MR angiography images using fuzzy knowledge base\",\"authors\":\"Syoji Kobashi, K. Kondo, Y. Hata\",\"doi\":\"10.1109/ISMVL.2003.1201389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an automated method for finding the Willis ring from the human brain MR angiography (MRA) images, which can depict cerebral arteries with high contrast. It strongly helps screening of unruptured cerebral aneurysm in MRA images. The proposed method consists of (1) segmenting cerebral arteries from MRA images, (2) skeletonization of artery trees, and detection of furcations, and (3) finding furcations in the Willis ring using genetic algorithm (GA) based on fuzzy knowledge base (fuzzy KB). Fuzzy KB gives knowledge about the Willis ring that consists of arteries and furcations. GA finds a set of furcations by optimizing an objective function. The objective function used by GA estimates fitness of a set of furcations using fuzzy KB. Our method was first applied to a 3-D phantom data generated by computer simulation. The result demonstrated that our method detected all suitable furcations correctly. Next, it was applied to MRA volume data of two normal healthy volunteers. In any cases, the proposed method detected desired all furcations in the Willis ring.\",\"PeriodicalId\":434515,\"journal\":{\"name\":\"33rd International Symposium on Multiple-Valued Logic, 2003. Proceedings.\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"33rd International Symposium on Multiple-Valued Logic, 2003. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL.2003.1201389\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"33rd International Symposium on Multiple-Valued Logic, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2003.1201389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种从人脑MR血管造影(MRA)图像中自动寻找威利斯环的方法,该方法可以高对比度地描绘大脑动脉。它有助于在MRA图像中筛选未破裂的脑动脉瘤。该方法包括(1)从MRA图像中分割脑动脉;(2)对动脉树进行骨架化和功能检测;(3)利用基于模糊知识库(fuzzy KB)的遗传算法(GA)寻找Willis环中的功能。模糊知识库提供了关于由动脉和功能组成的威利斯环的知识。遗传算法通过优化目标函数来找到一组函数。遗传算法使用的目标函数使用模糊知识库来估计一组函数的适应度。该方法首次应用于计算机模拟生成的三维幻像数据。结果表明,我们的方法能够正确地检测出所有合适的函数。然后,将其应用于2名正常健康志愿者的MRA体积数据。在任何情况下,所提出的方法检测所需的所有功能在威利斯环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated finding of the Willis ring in MR angiography images using fuzzy knowledge base
This paper proposes an automated method for finding the Willis ring from the human brain MR angiography (MRA) images, which can depict cerebral arteries with high contrast. It strongly helps screening of unruptured cerebral aneurysm in MRA images. The proposed method consists of (1) segmenting cerebral arteries from MRA images, (2) skeletonization of artery trees, and detection of furcations, and (3) finding furcations in the Willis ring using genetic algorithm (GA) based on fuzzy knowledge base (fuzzy KB). Fuzzy KB gives knowledge about the Willis ring that consists of arteries and furcations. GA finds a set of furcations by optimizing an objective function. The objective function used by GA estimates fitness of a set of furcations using fuzzy KB. Our method was first applied to a 3-D phantom data generated by computer simulation. The result demonstrated that our method detected all suitable furcations correctly. Next, it was applied to MRA volume data of two normal healthy volunteers. In any cases, the proposed method detected desired all furcations in the Willis ring.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信