Bigrams和BiLSTMs两种序列隐喻检测的神经网络

Yuri Bizzoni, M. Ghanimifard
{"title":"Bigrams和BiLSTMs两种序列隐喻检测的神经网络","authors":"Yuri Bizzoni, M. Ghanimifard","doi":"10.18653/v1/W18-0911","DOIUrl":null,"url":null,"abstract":"We present and compare two alternative deep neural architectures to perform word-level metaphor detection on text: a bi-LSTM model and a new structure based on recursive feed-forward concatenation of the input. We discuss different versions of such models and the effect that input manipulation - specifically, reducing the length of sentences and introducing concreteness scores for words - have on their performance.","PeriodicalId":190853,"journal":{"name":"Fig-Lang@NAACL-HLT","volume":"123 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Bigrams and BiLSTMs Two Neural Networks for Sequential Metaphor Detection\",\"authors\":\"Yuri Bizzoni, M. Ghanimifard\",\"doi\":\"10.18653/v1/W18-0911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present and compare two alternative deep neural architectures to perform word-level metaphor detection on text: a bi-LSTM model and a new structure based on recursive feed-forward concatenation of the input. We discuss different versions of such models and the effect that input manipulation - specifically, reducing the length of sentences and introducing concreteness scores for words - have on their performance.\",\"PeriodicalId\":190853,\"journal\":{\"name\":\"Fig-Lang@NAACL-HLT\",\"volume\":\"123 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fig-Lang@NAACL-HLT\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/W18-0911\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fig-Lang@NAACL-HLT","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W18-0911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

我们提出并比较了两种可选的深度神经结构来对文本执行词级隐喻检测:一种bi-LSTM模型和一种基于输入的递归前馈连接的新结构。我们讨论了这些模型的不同版本,以及输入操作的影响——特别是减少句子的长度和引入单词的具体得分——对它们的表现有什么影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bigrams and BiLSTMs Two Neural Networks for Sequential Metaphor Detection
We present and compare two alternative deep neural architectures to perform word-level metaphor detection on text: a bi-LSTM model and a new structure based on recursive feed-forward concatenation of the input. We discuss different versions of such models and the effect that input manipulation - specifically, reducing the length of sentences and introducing concreteness scores for words - have on their performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信