Yi Zhang, Jingjing Wang, D. Ponomarev, N. Abu-Ghazaleh
{"title":"探索并行离散事件仿真的多核架构设计空间","authors":"Yi Zhang, Jingjing Wang, D. Ponomarev, N. Abu-Ghazaleh","doi":"10.1145/2601381.2601392","DOIUrl":null,"url":null,"abstract":"As multicore and manycore processor architectures are emerging and the core counts per chip continue to increase, it is important to evaluate and understand the performance and scalability of Parallel Discrete Event Simulation (PDES) on these platforms. Most existing architectures are still limited to a modest number of cores, feature simple designs and do not exhibit heterogeneity, making it impossible to perform comprehensive analysis and evaluations of PDES on these platforms. Instead, in this paper we evaluate PDES using a full-system cycle-accurate simulator of a multicore processor and memory subsystem. With this approach, it is possible to flexibly configure the simulator and perform exploration of the impact of architecture design choices on the performance of PDES. In particular, we answer the following four questions with respect to PDES performance and scalability: (1) For the same total chip area, what is the best design point in terms of the number of cores and the size of the on-chip cache? (2) What is the impact of using in-order vs. out-of-order cores? (3) What is the impact of a heterogeneous system with a mix of in-order and out-of-order cores? (4) What is the impact of object partitioning on PDES performance in heterogeneous systems? To answer these questions, we use MARSSx86 simulator for evaluating performance, and rely on Cacti and McPAT tools to derive the area and latency estimates for cores and caches.","PeriodicalId":255272,"journal":{"name":"SIGSIM Principles of Advanced Discrete Simulation","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Exploring many-core architecture design space for parallel discrete event simulation\",\"authors\":\"Yi Zhang, Jingjing Wang, D. Ponomarev, N. Abu-Ghazaleh\",\"doi\":\"10.1145/2601381.2601392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As multicore and manycore processor architectures are emerging and the core counts per chip continue to increase, it is important to evaluate and understand the performance and scalability of Parallel Discrete Event Simulation (PDES) on these platforms. Most existing architectures are still limited to a modest number of cores, feature simple designs and do not exhibit heterogeneity, making it impossible to perform comprehensive analysis and evaluations of PDES on these platforms. Instead, in this paper we evaluate PDES using a full-system cycle-accurate simulator of a multicore processor and memory subsystem. With this approach, it is possible to flexibly configure the simulator and perform exploration of the impact of architecture design choices on the performance of PDES. In particular, we answer the following four questions with respect to PDES performance and scalability: (1) For the same total chip area, what is the best design point in terms of the number of cores and the size of the on-chip cache? (2) What is the impact of using in-order vs. out-of-order cores? (3) What is the impact of a heterogeneous system with a mix of in-order and out-of-order cores? (4) What is the impact of object partitioning on PDES performance in heterogeneous systems? To answer these questions, we use MARSSx86 simulator for evaluating performance, and rely on Cacti and McPAT tools to derive the area and latency estimates for cores and caches.\",\"PeriodicalId\":255272,\"journal\":{\"name\":\"SIGSIM Principles of Advanced Discrete Simulation\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGSIM Principles of Advanced Discrete Simulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2601381.2601392\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGSIM Principles of Advanced Discrete Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2601381.2601392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Exploring many-core architecture design space for parallel discrete event simulation
As multicore and manycore processor architectures are emerging and the core counts per chip continue to increase, it is important to evaluate and understand the performance and scalability of Parallel Discrete Event Simulation (PDES) on these platforms. Most existing architectures are still limited to a modest number of cores, feature simple designs and do not exhibit heterogeneity, making it impossible to perform comprehensive analysis and evaluations of PDES on these platforms. Instead, in this paper we evaluate PDES using a full-system cycle-accurate simulator of a multicore processor and memory subsystem. With this approach, it is possible to flexibly configure the simulator and perform exploration of the impact of architecture design choices on the performance of PDES. In particular, we answer the following four questions with respect to PDES performance and scalability: (1) For the same total chip area, what is the best design point in terms of the number of cores and the size of the on-chip cache? (2) What is the impact of using in-order vs. out-of-order cores? (3) What is the impact of a heterogeneous system with a mix of in-order and out-of-order cores? (4) What is the impact of object partitioning on PDES performance in heterogeneous systems? To answer these questions, we use MARSSx86 simulator for evaluating performance, and rely on Cacti and McPAT tools to derive the area and latency estimates for cores and caches.