利用路径积分技术研究非对易相空间中时变耦合谐振子的Berry相位

L. Khiari, T. Boudjedaa, A. Makhlouf, M. Meftah, Лейла Хиари, Тахар Буджедаа, Абденасер Махлуф, Мохамед Таеб Мефта
{"title":"利用路径积分技术研究非对易相空间中时变耦合谐振子的Berry相位","authors":"L. Khiari, T. Boudjedaa, A. Makhlouf, M. Meftah, Лейла Хиари, Тахар Буджедаа, Абденасер Махлуф, Мохамед Таеб Мефта","doi":"10.17516/1997-1397-2020-13-1-58-70","DOIUrl":null,"url":null,"abstract":"The classical geometry is based on the duality between the geometry and the commutative algebra. In commutative algebra, the product of two algebraic quantities is independent from the order. In Quantum Mechanics, following Heisenberg’s viewpoint, the geometry of the states space describing a microscopic system, an atom for example, has a new property such as the momentum and the position are non-commuting operators [1–7]:","PeriodicalId":422202,"journal":{"name":"Journal of Siberian Federal University. Mathematics and Physics","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Berry Phase for Time-Dependent Coupled Harmonic Oscillators in the Noncommutative Phase Space via Path Integral Techniques\",\"authors\":\"L. Khiari, T. Boudjedaa, A. Makhlouf, M. Meftah, Лейла Хиари, Тахар Буджедаа, Абденасер Махлуф, Мохамед Таеб Мефта\",\"doi\":\"10.17516/1997-1397-2020-13-1-58-70\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The classical geometry is based on the duality between the geometry and the commutative algebra. In commutative algebra, the product of two algebraic quantities is independent from the order. In Quantum Mechanics, following Heisenberg’s viewpoint, the geometry of the states space describing a microscopic system, an atom for example, has a new property such as the momentum and the position are non-commuting operators [1–7]:\",\"PeriodicalId\":422202,\"journal\":{\"name\":\"Journal of Siberian Federal University. Mathematics and Physics\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Siberian Federal University. Mathematics and Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17516/1997-1397-2020-13-1-58-70\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Siberian Federal University. Mathematics and Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17516/1997-1397-2020-13-1-58-70","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

经典几何是建立在几何与交换代数对偶的基础上的。在交换代数中,两个代数量的乘积与阶数无关。在量子力学中,遵循海森堡的观点,描述微观系统(例如原子)的状态空间的几何具有新的性质,例如动量和位置是非交换算子[1-7]:
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Berry Phase for Time-Dependent Coupled Harmonic Oscillators in the Noncommutative Phase Space via Path Integral Techniques
The classical geometry is based on the duality between the geometry and the commutative algebra. In commutative algebra, the product of two algebraic quantities is independent from the order. In Quantum Mechanics, following Heisenberg’s viewpoint, the geometry of the states space describing a microscopic system, an atom for example, has a new property such as the momentum and the position are non-commuting operators [1–7]:
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信