跨相机深着色

Yaping Zhao, Haitian Zheng, Mengqi Ji, Ruqi Huang
{"title":"跨相机深着色","authors":"Yaping Zhao, Haitian Zheng, Mengqi Ji, Ruqi Huang","doi":"10.48550/arXiv.2209.01211","DOIUrl":null,"url":null,"abstract":". In this paper, we consider the color-plus-mono dual-camera system and propose an end-to-end convolutional neural network to align and fuse images from it in an efficient and cost-effective way. Our method takes cross-domain and cross-scale images as input, and consequently synthesizes HR colorization results to facilitate the trade-off between spatial-temporal resolution and color depth in the single-camera imaging system. In contrast to the previous colorization methods, ours can adapt to color and monochrome cameras with distinctive spatial-temporal resolutions, rendering the flexibility and robustness in practical applications. The key ingredient of our method is a cross-camera alignment module that generates multi-scale correspondences for cross-domain image alignment. Through extensive experiments on various datasets and multiple settings, we val-idate the flexibility and effectiveness of our approach. Remarkably, our method consistently achieves substantial improvements, i.e. , around 10dB PSNR gain, upon the state-of-the-art methods. Code is at: github.com/IndigoPurple/CCDC.","PeriodicalId":155654,"journal":{"name":"CAAI International Conference on Artificial Intelligence","volume":"136 9","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Cross-Camera Deep Colorization\",\"authors\":\"Yaping Zhao, Haitian Zheng, Mengqi Ji, Ruqi Huang\",\"doi\":\"10.48550/arXiv.2209.01211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this paper, we consider the color-plus-mono dual-camera system and propose an end-to-end convolutional neural network to align and fuse images from it in an efficient and cost-effective way. Our method takes cross-domain and cross-scale images as input, and consequently synthesizes HR colorization results to facilitate the trade-off between spatial-temporal resolution and color depth in the single-camera imaging system. In contrast to the previous colorization methods, ours can adapt to color and monochrome cameras with distinctive spatial-temporal resolutions, rendering the flexibility and robustness in practical applications. The key ingredient of our method is a cross-camera alignment module that generates multi-scale correspondences for cross-domain image alignment. Through extensive experiments on various datasets and multiple settings, we val-idate the flexibility and effectiveness of our approach. Remarkably, our method consistently achieves substantial improvements, i.e. , around 10dB PSNR gain, upon the state-of-the-art methods. Code is at: github.com/IndigoPurple/CCDC.\",\"PeriodicalId\":155654,\"journal\":{\"name\":\"CAAI International Conference on Artificial Intelligence\",\"volume\":\"136 9\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CAAI International Conference on Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2209.01211\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CAAI International Conference on Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2209.01211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

. 在本文中,我们考虑了彩色加单色双摄像头系统,并提出了一个端到端的卷积神经网络,以一种高效和经济的方式对其中的图像进行对齐和融合。该方法以跨域和跨尺度图像为输入,综合HR着色结果,实现了单相机成像系统中时空分辨率和颜色深度之间的权衡。与以往的着色方法相比,我们的方法能够适应彩色和单色相机,具有独特的时空分辨率,在实际应用中具有灵活性和鲁棒性。该方法的关键组成部分是一个跨相机对准模块,该模块为跨域图像对准生成多尺度对应。通过对各种数据集和多种设置的广泛实验,我们验证了我们方法的灵活性和有效性。值得注意的是,我们的方法始终实现了实质性的改进,即在最先进的方法上,大约10dB PSNR增益。代码在:github.com/IndigoPurple/CCDC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cross-Camera Deep Colorization
. In this paper, we consider the color-plus-mono dual-camera system and propose an end-to-end convolutional neural network to align and fuse images from it in an efficient and cost-effective way. Our method takes cross-domain and cross-scale images as input, and consequently synthesizes HR colorization results to facilitate the trade-off between spatial-temporal resolution and color depth in the single-camera imaging system. In contrast to the previous colorization methods, ours can adapt to color and monochrome cameras with distinctive spatial-temporal resolutions, rendering the flexibility and robustness in practical applications. The key ingredient of our method is a cross-camera alignment module that generates multi-scale correspondences for cross-domain image alignment. Through extensive experiments on various datasets and multiple settings, we val-idate the flexibility and effectiveness of our approach. Remarkably, our method consistently achieves substantial improvements, i.e. , around 10dB PSNR gain, upon the state-of-the-art methods. Code is at: github.com/IndigoPurple/CCDC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信