基于变分自编码器的高维小样本数据分类降维方法

M.S. Mahmud, J. Huang, Xianghua Fu
{"title":"基于变分自编码器的高维小样本数据分类降维方法","authors":"M.S. Mahmud, J. Huang, Xianghua Fu","doi":"10.1142/s1469026820500029","DOIUrl":null,"url":null,"abstract":"Classification problems in which the number of features (dimensions) is unduly higher than the number of samples (observations) is an essential research and application area in a variety of domains...","PeriodicalId":422521,"journal":{"name":"Int. J. Comput. Intell. Appl.","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Variational Autoencoder-Based Dimensionality Reduction for High-Dimensional Small-Sample Data Classification\",\"authors\":\"M.S. Mahmud, J. Huang, Xianghua Fu\",\"doi\":\"10.1142/s1469026820500029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classification problems in which the number of features (dimensions) is unduly higher than the number of samples (observations) is an essential research and application area in a variety of domains...\",\"PeriodicalId\":422521,\"journal\":{\"name\":\"Int. J. Comput. Intell. Appl.\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Comput. Intell. Appl.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s1469026820500029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Intell. Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1469026820500029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

特征数(维数)过高高于样本数(观测值)的分类问题是许多领域中必不可少的研究和应用领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Variational Autoencoder-Based Dimensionality Reduction for High-Dimensional Small-Sample Data Classification
Classification problems in which the number of features (dimensions) is unduly higher than the number of samples (observations) is an essential research and application area in a variety of domains...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信