基于傅里叶变换的核-复数判别分析及其在人脸识别中的应用

Sheng Li, Xiaoyuan Jing, Qian Liu, Yanyan Lv, Yong-Fang Yao, Wenying Ma, Wei Xu
{"title":"基于傅里叶变换的核-复数判别分析及其在人脸识别中的应用","authors":"Sheng Li, Xiaoyuan Jing, Qian Liu, Yanyan Lv, Yong-Fang Yao, Wenying Ma, Wei Xu","doi":"10.1109/CCPR.2009.5344052","DOIUrl":null,"url":null,"abstract":"Fourier transform is a widely used image processing technology. Kernel discriminant analysis is an effective nonlinear feature extraction technique. Based on them, we propose a novel feature extraction approach for face recognition. First, we perform the Fourier transform on face images and express the Fourier frequency bands in the plural form. By computing the kernel-plural discriminant capability of every frequency band, we choose the bands with strong capabilities and use them to form a new sample set. Then, we extract nonlinear discriminant features from the set and classify it by using the nearest neighbor classifier. Experimental results on AR and Feret face databases demonstrate the effectiveness of the proposed approach.","PeriodicalId":354468,"journal":{"name":"2009 Chinese Conference on Pattern Recognition","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kernel-Plural Discriminant Analysis Based on Fourier Transform and Its Application to Face Recognition\",\"authors\":\"Sheng Li, Xiaoyuan Jing, Qian Liu, Yanyan Lv, Yong-Fang Yao, Wenying Ma, Wei Xu\",\"doi\":\"10.1109/CCPR.2009.5344052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fourier transform is a widely used image processing technology. Kernel discriminant analysis is an effective nonlinear feature extraction technique. Based on them, we propose a novel feature extraction approach for face recognition. First, we perform the Fourier transform on face images and express the Fourier frequency bands in the plural form. By computing the kernel-plural discriminant capability of every frequency band, we choose the bands with strong capabilities and use them to form a new sample set. Then, we extract nonlinear discriminant features from the set and classify it by using the nearest neighbor classifier. Experimental results on AR and Feret face databases demonstrate the effectiveness of the proposed approach.\",\"PeriodicalId\":354468,\"journal\":{\"name\":\"2009 Chinese Conference on Pattern Recognition\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Chinese Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCPR.2009.5344052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Chinese Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCPR.2009.5344052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

傅里叶变换是一种应用广泛的图像处理技术。核判别分析是一种有效的非线性特征提取技术。在此基础上,提出了一种新的人脸识别特征提取方法。首先,对人脸图像进行傅里叶变换,并将傅里叶频带复数形式表示出来。通过计算各频段的核复数判别能力,选择能力较强的频段组成新的样本集。然后,从中提取非线性判别特征,并使用最近邻分类器对其进行分类。在AR和Feret人脸数据库上的实验结果证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kernel-Plural Discriminant Analysis Based on Fourier Transform and Its Application to Face Recognition
Fourier transform is a widely used image processing technology. Kernel discriminant analysis is an effective nonlinear feature extraction technique. Based on them, we propose a novel feature extraction approach for face recognition. First, we perform the Fourier transform on face images and express the Fourier frequency bands in the plural form. By computing the kernel-plural discriminant capability of every frequency band, we choose the bands with strong capabilities and use them to form a new sample set. Then, we extract nonlinear discriminant features from the set and classify it by using the nearest neighbor classifier. Experimental results on AR and Feret face databases demonstrate the effectiveness of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信