自主物联网设备识别原型

Nesrine Ammar, L. Noirie, S. Tixeuil
{"title":"自主物联网设备识别原型","authors":"Nesrine Ammar, L. Noirie, S. Tixeuil","doi":"10.23919/TMA.2019.8784517","DOIUrl":null,"url":null,"abstract":"In this paper, we demonstrate a prototype implementation to help identifying the types of IoT devices being connected to a home network. Our solution is based on a supervised classification algorithm (decision tree) trained on 33 IoT devices using relevant information extracted from network traffic. Our demo shows that our proposal is effective to automatically identify the types of IoT devices.","PeriodicalId":241672,"journal":{"name":"2019 Network Traffic Measurement and Analysis Conference (TMA)","volume":"183 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Autonomous IoT Device Identification Prototype\",\"authors\":\"Nesrine Ammar, L. Noirie, S. Tixeuil\",\"doi\":\"10.23919/TMA.2019.8784517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we demonstrate a prototype implementation to help identifying the types of IoT devices being connected to a home network. Our solution is based on a supervised classification algorithm (decision tree) trained on 33 IoT devices using relevant information extracted from network traffic. Our demo shows that our proposal is effective to automatically identify the types of IoT devices.\",\"PeriodicalId\":241672,\"journal\":{\"name\":\"2019 Network Traffic Measurement and Analysis Conference (TMA)\",\"volume\":\"183 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Network Traffic Measurement and Analysis Conference (TMA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/TMA.2019.8784517\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Network Traffic Measurement and Analysis Conference (TMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/TMA.2019.8784517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在本文中,我们演示了一个原型实现,以帮助识别连接到家庭网络的物联网设备的类型。我们的解决方案基于监督分类算法(决策树),该算法使用从网络流量中提取的相关信息对33个物联网设备进行了训练。我们的演示表明,我们的建议可以有效地自动识别物联网设备的类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Autonomous IoT Device Identification Prototype
In this paper, we demonstrate a prototype implementation to help identifying the types of IoT devices being connected to a home network. Our solution is based on a supervised classification algorithm (decision tree) trained on 33 IoT devices using relevant information extracted from network traffic. Our demo shows that our proposal is effective to automatically identify the types of IoT devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信