{"title":"一种确定无线传感器网络最大瓶颈节点权重数据采集树的通用算法","authors":"N. Meghanathan","doi":"10.5296/npa.v7i3.7961","DOIUrl":null,"url":null,"abstract":"We propose a generic algorithm to determine maximum bottleneck node weight-based data gathering (MaxBNW-DG) trees for wireless sensor networks (WSNs) and compare the performance of the MaxBNW-DG trees with those of maximum and minimum link weight-based data gathering trees (MaxLW-DG and MinLW-DG trees). Assuming each node in a WSN graph has a weight, the bottleneck weight for the path from a node u to the root node of the DG tree is the minimum of the node weights on the path (inclusive of the weights of the end nodes). The MaxBNW-DG tree algorithm determines a DG tree such that each node has a path of the largest bottleneck weight to the root node. We observe the MaxBNW-DG trees to incur lower height, larger percentage of nodes as leaf nodes and a larger weight per intermediate node compared to the leaf node; the tradeoff being a larger a network-wide data aggregation delay due to larger number of child nodes per intermediate node. The MaxBNW-DG algorithm could be used to determine DG trees with larger trust score, larger energy (and other such criterion for node weight) per intermediate node compared to the leaf node.","PeriodicalId":190994,"journal":{"name":"Netw. Protoc. Algorithms","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A Generic Algorithm to Determine Maximum Bottleneck Node Weight-based Data Gathering Trees for Wireless Sensor Networks\",\"authors\":\"N. Meghanathan\",\"doi\":\"10.5296/npa.v7i3.7961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a generic algorithm to determine maximum bottleneck node weight-based data gathering (MaxBNW-DG) trees for wireless sensor networks (WSNs) and compare the performance of the MaxBNW-DG trees with those of maximum and minimum link weight-based data gathering trees (MaxLW-DG and MinLW-DG trees). Assuming each node in a WSN graph has a weight, the bottleneck weight for the path from a node u to the root node of the DG tree is the minimum of the node weights on the path (inclusive of the weights of the end nodes). The MaxBNW-DG tree algorithm determines a DG tree such that each node has a path of the largest bottleneck weight to the root node. We observe the MaxBNW-DG trees to incur lower height, larger percentage of nodes as leaf nodes and a larger weight per intermediate node compared to the leaf node; the tradeoff being a larger a network-wide data aggregation delay due to larger number of child nodes per intermediate node. The MaxBNW-DG algorithm could be used to determine DG trees with larger trust score, larger energy (and other such criterion for node weight) per intermediate node compared to the leaf node.\",\"PeriodicalId\":190994,\"journal\":{\"name\":\"Netw. Protoc. Algorithms\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Netw. Protoc. Algorithms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5296/npa.v7i3.7961\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Netw. Protoc. Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5296/npa.v7i3.7961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Generic Algorithm to Determine Maximum Bottleneck Node Weight-based Data Gathering Trees for Wireless Sensor Networks
We propose a generic algorithm to determine maximum bottleneck node weight-based data gathering (MaxBNW-DG) trees for wireless sensor networks (WSNs) and compare the performance of the MaxBNW-DG trees with those of maximum and minimum link weight-based data gathering trees (MaxLW-DG and MinLW-DG trees). Assuming each node in a WSN graph has a weight, the bottleneck weight for the path from a node u to the root node of the DG tree is the minimum of the node weights on the path (inclusive of the weights of the end nodes). The MaxBNW-DG tree algorithm determines a DG tree such that each node has a path of the largest bottleneck weight to the root node. We observe the MaxBNW-DG trees to incur lower height, larger percentage of nodes as leaf nodes and a larger weight per intermediate node compared to the leaf node; the tradeoff being a larger a network-wide data aggregation delay due to larger number of child nodes per intermediate node. The MaxBNW-DG algorithm could be used to determine DG trees with larger trust score, larger energy (and other such criterion for node weight) per intermediate node compared to the leaf node.