MAP-PF三维位置跟踪使用多传感器阵列

K. Bell, R. Pitre
{"title":"MAP-PF三维位置跟踪使用多传感器阵列","authors":"K. Bell, R. Pitre","doi":"10.1109/SAM.2008.4606863","DOIUrl":null,"url":null,"abstract":"The maximum a posteriori penalty function (MAP-PF) approach is applied to three-dimensional (3D) target position tracking of multiple wideband sources using multiple distributed sensor arrays. The track estimation problem is formulated directly from the array data using the maximum a posteriori (MAP) estimation criterion. The penalty function (PF) method of nonlinear programming is used to obtain a tractable solution. A sequential update procedure is developed in which penalized maximum likelihood estimates of target directions-of-arrival (DOAs) and spectra are computed at each array and then used as synthetic measurements in a set of extended Kalman filters. The two steps are coupled via the penalty function. The current target states are used to guide the DOA/spectrum estimation, and the estimated signal spectra control the influence of the DOA estimates from each array on the final track estimates. The algorithm can be implemented in a decentralized manner where DOA/spectrum estimation is performed at the arrays, and track estimation is performed at a central processing site.","PeriodicalId":422747,"journal":{"name":"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"MAP-PF 3D position tracking using multiple sensor array\",\"authors\":\"K. Bell, R. Pitre\",\"doi\":\"10.1109/SAM.2008.4606863\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The maximum a posteriori penalty function (MAP-PF) approach is applied to three-dimensional (3D) target position tracking of multiple wideband sources using multiple distributed sensor arrays. The track estimation problem is formulated directly from the array data using the maximum a posteriori (MAP) estimation criterion. The penalty function (PF) method of nonlinear programming is used to obtain a tractable solution. A sequential update procedure is developed in which penalized maximum likelihood estimates of target directions-of-arrival (DOAs) and spectra are computed at each array and then used as synthetic measurements in a set of extended Kalman filters. The two steps are coupled via the penalty function. The current target states are used to guide the DOA/spectrum estimation, and the estimated signal spectra control the influence of the DOA estimates from each array on the final track estimates. The algorithm can be implemented in a decentralized manner where DOA/spectrum estimation is performed at the arrays, and track estimation is performed at a central processing site.\",\"PeriodicalId\":422747,\"journal\":{\"name\":\"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAM.2008.4606863\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM.2008.4606863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

将最大后验惩罚函数(MAP-PF)方法应用于基于多个分布式传感器阵列的多宽带源三维目标位置跟踪。航迹估计问题采用最大后验估计准则直接从阵列数据中推导。采用非线性规划的罚函数法得到了一个可处理的解。提出了一种序列更新方法,在每个阵列上计算目标到达方向(DOAs)和光谱的惩罚最大似然估计,然后在一组扩展卡尔曼滤波器中用作合成测量。这两个步骤通过惩罚函数耦合在一起。利用当前目标状态指导DOA/频谱估计,估计的信号频谱控制各阵列DOA估计对最终航迹估计的影响。该算法可以以分散的方式实现,在阵列上执行DOA/频谱估计,在中央处理站点执行航迹估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MAP-PF 3D position tracking using multiple sensor array
The maximum a posteriori penalty function (MAP-PF) approach is applied to three-dimensional (3D) target position tracking of multiple wideband sources using multiple distributed sensor arrays. The track estimation problem is formulated directly from the array data using the maximum a posteriori (MAP) estimation criterion. The penalty function (PF) method of nonlinear programming is used to obtain a tractable solution. A sequential update procedure is developed in which penalized maximum likelihood estimates of target directions-of-arrival (DOAs) and spectra are computed at each array and then used as synthetic measurements in a set of extended Kalman filters. The two steps are coupled via the penalty function. The current target states are used to guide the DOA/spectrum estimation, and the estimated signal spectra control the influence of the DOA estimates from each array on the final track estimates. The algorithm can be implemented in a decentralized manner where DOA/spectrum estimation is performed at the arrays, and track estimation is performed at a central processing site.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信