考虑样本全局分布信息的混合大数据快速聚类算法

Wen Tian, Lei Shen
{"title":"考虑样本全局分布信息的混合大数据快速聚类算法","authors":"Wen Tian, Lei Shen","doi":"10.1109/PHM-Yantai55411.2022.9941899","DOIUrl":null,"url":null,"abstract":"In view of the poor clustering accuracy of current hybrid large data fast clustering algorithms, a hybrid large data fast clustering algorithm considering global distribution information is proposed. Rough set algorithm is used to collect mixed data samples considering global distribution information of samples. The original mixed data entropy is calculated to complete the initial data partition. MapReduce is combined with the classical spectral clustering algorithm to complete the hybrid large data clustering analysis. So far, the hybrid big data clustering algorithm considering global distribution information of samples is designed. The experimental findings demonstrate that this method's clustering accuracy is comparatively high and that excellent clustering outcomes may be attained.","PeriodicalId":315994,"journal":{"name":"2022 Global Reliability and Prognostics and Health Management (PHM-Yantai)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Fast Clustering Algorithm for Hybrid Big Data Considering the Global Distribution Information of Samples\",\"authors\":\"Wen Tian, Lei Shen\",\"doi\":\"10.1109/PHM-Yantai55411.2022.9941899\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In view of the poor clustering accuracy of current hybrid large data fast clustering algorithms, a hybrid large data fast clustering algorithm considering global distribution information is proposed. Rough set algorithm is used to collect mixed data samples considering global distribution information of samples. The original mixed data entropy is calculated to complete the initial data partition. MapReduce is combined with the classical spectral clustering algorithm to complete the hybrid large data clustering analysis. So far, the hybrid big data clustering algorithm considering global distribution information of samples is designed. The experimental findings demonstrate that this method's clustering accuracy is comparatively high and that excellent clustering outcomes may be attained.\",\"PeriodicalId\":315994,\"journal\":{\"name\":\"2022 Global Reliability and Prognostics and Health Management (PHM-Yantai)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Global Reliability and Prognostics and Health Management (PHM-Yantai)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PHM-Yantai55411.2022.9941899\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Global Reliability and Prognostics and Health Management (PHM-Yantai)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PHM-Yantai55411.2022.9941899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对目前混合大数据快速聚类算法聚类精度较差的问题,提出了一种考虑全局分布信息的混合大数据快速聚类算法。考虑样本的全局分布信息,采用粗糙集算法采集混合数据样本。计算原始混合数据熵,完成初始数据分区。MapReduce与经典谱聚类算法相结合,完成混合大数据聚类分析。至此,设计了考虑样本全局分布信息的混合大数据聚类算法。实验结果表明,该方法的聚类精度较高,可以获得较好的聚类结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Fast Clustering Algorithm for Hybrid Big Data Considering the Global Distribution Information of Samples
In view of the poor clustering accuracy of current hybrid large data fast clustering algorithms, a hybrid large data fast clustering algorithm considering global distribution information is proposed. Rough set algorithm is used to collect mixed data samples considering global distribution information of samples. The original mixed data entropy is calculated to complete the initial data partition. MapReduce is combined with the classical spectral clustering algorithm to complete the hybrid large data clustering analysis. So far, the hybrid big data clustering algorithm considering global distribution information of samples is designed. The experimental findings demonstrate that this method's clustering accuracy is comparatively high and that excellent clustering outcomes may be attained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信