{"title":"情境化嵌入中的性别偏见测量","authors":"Styliani Katsarou, Borja Rodríguez-Gálvez, Jesse Shanahan","doi":"10.3390/cmsf2022003003","DOIUrl":null,"url":null,"abstract":": Transformer models are now increasingly being used in real-world applications. Indiscrim-inately using these models as automated tools may propagate biases in ways we do not realize. To responsibly direct actions that will combat this problem, it is of crucial importance that we detect and quantify these biases. Robust methods have been developed to measure bias in non-contextualized embeddings. Nevertheless, these methods fail to apply to contextualized embeddings due to their mutable nature. Our study focuses on the detection and measurement of stereotypical biases associated with gender in the embeddings of T5 and mT5. We quantify bias by measuring the gender polarity of T5’s word embeddings for various professions. To measure gender polarity, we use a stable gender direction that we detect in the model’s embedding space. We also measure gender bias with respect to a specific downstream task and compare Swedish with English, as well as various sizes of the T5 model and its multilingual variant. The insights from our exploration indicate that the use of a stable gender direction, even in a Transformer’s mutable embedding space, can be a robust method to measure bias. We show that higher status professions are associated more with the male gender than the female gender. In addition, our method suggests that the Swedish language carries less bias associated with gender than English, and the higher manifestation of gender bias is associated with the use of larger language models.","PeriodicalId":127261,"journal":{"name":"AAAI Workshop on Artificial Intelligence with Biased or Scarce Data (AIBSD)","volume":"1 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Measuring Gender Bias in Contextualized Embeddings\",\"authors\":\"Styliani Katsarou, Borja Rodríguez-Gálvez, Jesse Shanahan\",\"doi\":\"10.3390/cmsf2022003003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Transformer models are now increasingly being used in real-world applications. Indiscrim-inately using these models as automated tools may propagate biases in ways we do not realize. To responsibly direct actions that will combat this problem, it is of crucial importance that we detect and quantify these biases. Robust methods have been developed to measure bias in non-contextualized embeddings. Nevertheless, these methods fail to apply to contextualized embeddings due to their mutable nature. Our study focuses on the detection and measurement of stereotypical biases associated with gender in the embeddings of T5 and mT5. We quantify bias by measuring the gender polarity of T5’s word embeddings for various professions. To measure gender polarity, we use a stable gender direction that we detect in the model’s embedding space. We also measure gender bias with respect to a specific downstream task and compare Swedish with English, as well as various sizes of the T5 model and its multilingual variant. The insights from our exploration indicate that the use of a stable gender direction, even in a Transformer’s mutable embedding space, can be a robust method to measure bias. We show that higher status professions are associated more with the male gender than the female gender. In addition, our method suggests that the Swedish language carries less bias associated with gender than English, and the higher manifestation of gender bias is associated with the use of larger language models.\",\"PeriodicalId\":127261,\"journal\":{\"name\":\"AAAI Workshop on Artificial Intelligence with Biased or Scarce Data (AIBSD)\",\"volume\":\"1 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AAAI Workshop on Artificial Intelligence with Biased or Scarce Data (AIBSD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/cmsf2022003003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAAI Workshop on Artificial Intelligence with Biased or Scarce Data (AIBSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/cmsf2022003003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Measuring Gender Bias in Contextualized Embeddings
: Transformer models are now increasingly being used in real-world applications. Indiscrim-inately using these models as automated tools may propagate biases in ways we do not realize. To responsibly direct actions that will combat this problem, it is of crucial importance that we detect and quantify these biases. Robust methods have been developed to measure bias in non-contextualized embeddings. Nevertheless, these methods fail to apply to contextualized embeddings due to their mutable nature. Our study focuses on the detection and measurement of stereotypical biases associated with gender in the embeddings of T5 and mT5. We quantify bias by measuring the gender polarity of T5’s word embeddings for various professions. To measure gender polarity, we use a stable gender direction that we detect in the model’s embedding space. We also measure gender bias with respect to a specific downstream task and compare Swedish with English, as well as various sizes of the T5 model and its multilingual variant. The insights from our exploration indicate that the use of a stable gender direction, even in a Transformer’s mutable embedding space, can be a robust method to measure bias. We show that higher status professions are associated more with the male gender than the female gender. In addition, our method suggests that the Swedish language carries less bias associated with gender than English, and the higher manifestation of gender bias is associated with the use of larger language models.