深度学习与金融稳定

G. Gensler, Lily Bailey
{"title":"深度学习与金融稳定","authors":"G. Gensler, Lily Bailey","doi":"10.2139/ssrn.3723132","DOIUrl":null,"url":null,"abstract":"The financial sector is entering a new era of rapidly advancing data analytics as deep learning models are adopted into its technology stack. A subset of Artificial Intelligence, deep learning represents a fundamental discontinuity from prior analytical techniques, providing previously unseen predictive powers enabling significant opportunities for efficiency, financial inclusion, and risk mitigation. Broad adoption of deep learning, though, may over time increase uniformity, interconnectedness, and regulatory gaps. This paper maps deep learning’s key characteristics across five possible transmission pathways exploring how, as it moves to a mature stage of broad adoption, it may lead to financial system fragility and economy-wide risks. Existing financial sector regulatory regimes - built in an earlier era of data analytics technology - are likely to fall short in addressing the systemic risks posed by broad adoption of deep learning in finance. The authors close by considering policy tools that might mitigate these systemic risks.","PeriodicalId":376194,"journal":{"name":"ERN: Regulation & Supervision (Topic)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Deep Learning and Financial Stability\",\"authors\":\"G. Gensler, Lily Bailey\",\"doi\":\"10.2139/ssrn.3723132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The financial sector is entering a new era of rapidly advancing data analytics as deep learning models are adopted into its technology stack. A subset of Artificial Intelligence, deep learning represents a fundamental discontinuity from prior analytical techniques, providing previously unseen predictive powers enabling significant opportunities for efficiency, financial inclusion, and risk mitigation. Broad adoption of deep learning, though, may over time increase uniformity, interconnectedness, and regulatory gaps. This paper maps deep learning’s key characteristics across five possible transmission pathways exploring how, as it moves to a mature stage of broad adoption, it may lead to financial system fragility and economy-wide risks. Existing financial sector regulatory regimes - built in an earlier era of data analytics technology - are likely to fall short in addressing the systemic risks posed by broad adoption of deep learning in finance. The authors close by considering policy tools that might mitigate these systemic risks.\",\"PeriodicalId\":376194,\"journal\":{\"name\":\"ERN: Regulation & Supervision (Topic)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Regulation & Supervision (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3723132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Regulation & Supervision (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3723132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

随着深度学习模型被应用到金融行业的技术堆栈中,金融行业正在进入一个快速推进数据分析的新时代。作为人工智能的一个子集,深度学习代表了与以前的分析技术的根本不连续性,提供了以前看不到的预测能力,为效率、金融包容性和风险缓解提供了重要机会。然而,随着时间的推移,深度学习的广泛采用可能会增加统一性、互联性和监管缺口。本文通过五种可能的传播途径描绘了深度学习的关键特征,探讨了随着深度学习进入广泛采用的成熟阶段,它可能如何导致金融体系脆弱性和整体经济风险。现有的金融部门监管制度——建立在数据分析技术的早期时代——可能无法应对金融领域广泛采用深度学习所带来的系统性风险。作者最后考虑了可能减轻这些系统性风险的政策工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning and Financial Stability
The financial sector is entering a new era of rapidly advancing data analytics as deep learning models are adopted into its technology stack. A subset of Artificial Intelligence, deep learning represents a fundamental discontinuity from prior analytical techniques, providing previously unseen predictive powers enabling significant opportunities for efficiency, financial inclusion, and risk mitigation. Broad adoption of deep learning, though, may over time increase uniformity, interconnectedness, and regulatory gaps. This paper maps deep learning’s key characteristics across five possible transmission pathways exploring how, as it moves to a mature stage of broad adoption, it may lead to financial system fragility and economy-wide risks. Existing financial sector regulatory regimes - built in an earlier era of data analytics technology - are likely to fall short in addressing the systemic risks posed by broad adoption of deep learning in finance. The authors close by considering policy tools that might mitigate these systemic risks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信