部分滑移的平面拉伸流动

R. Ene, V. Marinca, R. Negrea
{"title":"部分滑移的平面拉伸流动","authors":"R. Ene, V. Marinca, R. Negrea","doi":"10.1109/SYNASC.2013.24","DOIUrl":null,"url":null,"abstract":"The investigation deals with the slip effects on the problem of viscous incompressible flows induced by a stretching sheet. This problem correspond to the planar stretching. The flow is governed by a third-order nonlinear boundary value problem which has been solved by Optimal Homotopy Asymptotic Method (OHAM). Convergence of the OHAM solution is checked. Our method does not depend upon small parameter and obtained results reveal that this procedure is very effective, simple and accurate.","PeriodicalId":293085,"journal":{"name":"2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Planar Stretching Flows with Partial Slip\",\"authors\":\"R. Ene, V. Marinca, R. Negrea\",\"doi\":\"10.1109/SYNASC.2013.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The investigation deals with the slip effects on the problem of viscous incompressible flows induced by a stretching sheet. This problem correspond to the planar stretching. The flow is governed by a third-order nonlinear boundary value problem which has been solved by Optimal Homotopy Asymptotic Method (OHAM). Convergence of the OHAM solution is checked. Our method does not depend upon small parameter and obtained results reveal that this procedure is very effective, simple and accurate.\",\"PeriodicalId\":293085,\"journal\":{\"name\":\"2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC.2013.24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2013.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究了由拉伸板引起的粘性不可压缩流动问题中的滑移效应。这个问题对应于平面拉伸。流动是一个三阶非线性边值问题,用最优同伦渐近方法(OHAM)求解。验证了OHAM解的收敛性。该方法不依赖于小参数,计算结果表明该方法是有效、简便、准确的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Planar Stretching Flows with Partial Slip
The investigation deals with the slip effects on the problem of viscous incompressible flows induced by a stretching sheet. This problem correspond to the planar stretching. The flow is governed by a third-order nonlinear boundary value problem which has been solved by Optimal Homotopy Asymptotic Method (OHAM). Convergence of the OHAM solution is checked. Our method does not depend upon small parameter and obtained results reveal that this procedure is very effective, simple and accurate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信