基于特征选择和多模态融合的电影片段情感估计

Yasemin Timar, Nihan Karslioglu, Heysem Kaya, A. A. Salah
{"title":"基于特征选择和多模态融合的电影片段情感估计","authors":"Yasemin Timar, Nihan Karslioglu, Heysem Kaya, A. A. Salah","doi":"10.1145/3206025.3206074","DOIUrl":null,"url":null,"abstract":"Perceptual understanding of media content has many applications, including content-based retrieval, marketing, content optimization, psychological assessment, and affect-based learning. In this paper, we model audio visual features extracted from videos via machine learning approaches to estimate the affective responses of the viewers. We use the LIRIS-ACCEDE dataset and the MediaEval 2017 Challenge setting to evaluate the proposed methods. This dataset is composed of movies of professional or amateur origin, annotated with viewers' arousal, valence, and fear scores. We extract a number of audio features, such as Mel-frequency Cepstral Coefficients, and visual features, such as dense SIFT, hue-saturation histogram, and features from a deep neural network trained for object recognition. We contrast two different approaches in the paper, and report experiments with different fusion and smoothing strategies. We demonstrate the benefit of feature selection and multimodal fusion on estimating affective responses to movie segments.","PeriodicalId":224132,"journal":{"name":"Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Feature Selection and Multimodal Fusion for Estimating Emotions Evoked by Movie Clips\",\"authors\":\"Yasemin Timar, Nihan Karslioglu, Heysem Kaya, A. A. Salah\",\"doi\":\"10.1145/3206025.3206074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Perceptual understanding of media content has many applications, including content-based retrieval, marketing, content optimization, psychological assessment, and affect-based learning. In this paper, we model audio visual features extracted from videos via machine learning approaches to estimate the affective responses of the viewers. We use the LIRIS-ACCEDE dataset and the MediaEval 2017 Challenge setting to evaluate the proposed methods. This dataset is composed of movies of professional or amateur origin, annotated with viewers' arousal, valence, and fear scores. We extract a number of audio features, such as Mel-frequency Cepstral Coefficients, and visual features, such as dense SIFT, hue-saturation histogram, and features from a deep neural network trained for object recognition. We contrast two different approaches in the paper, and report experiments with different fusion and smoothing strategies. We demonstrate the benefit of feature selection and multimodal fusion on estimating affective responses to movie segments.\",\"PeriodicalId\":224132,\"journal\":{\"name\":\"Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3206025.3206074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3206025.3206074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

媒体内容的感性理解有许多应用,包括基于内容的检索、营销、内容优化、心理评估和基于影响的学习。在本文中,我们通过机器学习方法对从视频中提取的视听特征进行建模,以估计观众的情感反应。我们使用LIRIS-ACCEDE数据集和MediaEval 2017 Challenge设置来评估所提出的方法。该数据集由专业或业余电影组成,并注释了观众的唤醒,价和恐惧分数。我们提取了许多音频特征,如mel频率倒谱系数,视觉特征,如密集SIFT,色调饱和度直方图,以及来自深度神经网络的特征,用于对象识别。我们对比了两种不同的方法,并报道了不同融合和平滑策略的实验。我们展示了特征选择和多模态融合在估计对电影片段的情感反应方面的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature Selection and Multimodal Fusion for Estimating Emotions Evoked by Movie Clips
Perceptual understanding of media content has many applications, including content-based retrieval, marketing, content optimization, psychological assessment, and affect-based learning. In this paper, we model audio visual features extracted from videos via machine learning approaches to estimate the affective responses of the viewers. We use the LIRIS-ACCEDE dataset and the MediaEval 2017 Challenge setting to evaluate the proposed methods. This dataset is composed of movies of professional or amateur origin, annotated with viewers' arousal, valence, and fear scores. We extract a number of audio features, such as Mel-frequency Cepstral Coefficients, and visual features, such as dense SIFT, hue-saturation histogram, and features from a deep neural network trained for object recognition. We contrast two different approaches in the paper, and report experiments with different fusion and smoothing strategies. We demonstrate the benefit of feature selection and multimodal fusion on estimating affective responses to movie segments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信