基于CEEMD-GWO-GRU的苹果害虫预测

Bo-Wen Lv Bo-Wen Lv, Wen-Bai Chen Bo-Wen Lv, Yi-Qun Wang Wen-Bai Chen
{"title":"基于CEEMD-GWO-GRU的苹果害虫预测","authors":"Bo-Wen Lv Bo-Wen Lv, Wen-Bai Chen Bo-Wen Lv, Yi-Qun Wang Wen-Bai Chen","doi":"10.53106/199115992023063403028","DOIUrl":null,"url":null,"abstract":"\n The study aimed to address the harm caused by frequent occurrence of Carposina sasakii by proposing a predictive model (GEEMD-GWO-GRU) and a warning mechanism. This model combined Complementary Ensemble Empirical Mode Decomposition (CEEMD) and Grey Wolf Optimization Algorithm (GWO) with Gated Recurrent Unit (GRU). The historical data on Carposina sasakii was first decomposed using CEEMD, then each eigenfunction modeled through GWO-GRU. Finally, the prediction of each eigenfunction was integrated to develop an apple and peach microcephalus prediction and early warning model based on GRU. Results indicated that the CEEMD-GWO-GRU model was more accurate in predicting apple Carposina sasakii disease compared to other methods, displaying an average absolute percentage error of 0.823% and a coefficient of determination of 0.961. This method has potential as a new strategy for agricultural pest and disease prediction.   \n","PeriodicalId":345067,"journal":{"name":"電腦學刊","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Prediction of Apple Pests Based on CEEMD-GWO-GRU\",\"authors\":\"Bo-Wen Lv Bo-Wen Lv, Wen-Bai Chen Bo-Wen Lv, Yi-Qun Wang Wen-Bai Chen\",\"doi\":\"10.53106/199115992023063403028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The study aimed to address the harm caused by frequent occurrence of Carposina sasakii by proposing a predictive model (GEEMD-GWO-GRU) and a warning mechanism. This model combined Complementary Ensemble Empirical Mode Decomposition (CEEMD) and Grey Wolf Optimization Algorithm (GWO) with Gated Recurrent Unit (GRU). The historical data on Carposina sasakii was first decomposed using CEEMD, then each eigenfunction modeled through GWO-GRU. Finally, the prediction of each eigenfunction was integrated to develop an apple and peach microcephalus prediction and early warning model based on GRU. Results indicated that the CEEMD-GWO-GRU model was more accurate in predicting apple Carposina sasakii disease compared to other methods, displaying an average absolute percentage error of 0.823% and a coefficient of determination of 0.961. This method has potential as a new strategy for agricultural pest and disease prediction.   \\n\",\"PeriodicalId\":345067,\"journal\":{\"name\":\"電腦學刊\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"電腦學刊\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53106/199115992023063403028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"電腦學刊","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53106/199115992023063403028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在通过建立预测模型(GEEMD-GWO-GRU)和预警机制,解决sasaki Carposina频繁发生所造成的危害。该模型结合了互补集成经验模态分解(CEEMD)和带门控循环单元(GRU)的灰狼优化算法(GWO)。首先利用CEEMD对川崎竹林历史数据进行分解,然后利用GWO-GRU对各特征函数进行建模。最后,综合各特征函数的预测结果,建立了基于GRU的苹果和桃子小头畸形预测预警模型。结果表明,CEEMD-GWO-GRU模型预测苹果卡波西纳病的准确率高于其他方法,平均绝对百分比误差为0.823%,决定系数为0.961。该方法具有作为农业病虫害预测新策略的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Prediction of Apple Pests Based on CEEMD-GWO-GRU
The study aimed to address the harm caused by frequent occurrence of Carposina sasakii by proposing a predictive model (GEEMD-GWO-GRU) and a warning mechanism. This model combined Complementary Ensemble Empirical Mode Decomposition (CEEMD) and Grey Wolf Optimization Algorithm (GWO) with Gated Recurrent Unit (GRU). The historical data on Carposina sasakii was first decomposed using CEEMD, then each eigenfunction modeled through GWO-GRU. Finally, the prediction of each eigenfunction was integrated to develop an apple and peach microcephalus prediction and early warning model based on GRU. Results indicated that the CEEMD-GWO-GRU model was more accurate in predicting apple Carposina sasakii disease compared to other methods, displaying an average absolute percentage error of 0.823% and a coefficient of determination of 0.961. This method has potential as a new strategy for agricultural pest and disease prediction.  
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信