利用随机矩阵理论确定高光谱图像中端元的数目

K. Cawse‐Nicholson, M. Sears, A. Robin, S. Damelin, K. Wessels, F. V. D. Bergh, R. Mathieu
{"title":"利用随机矩阵理论确定高光谱图像中端元的数目","authors":"K. Cawse‐Nicholson, M. Sears, A. Robin, S. Damelin, K. Wessels, F. V. D. Bergh, R. Mathieu","doi":"10.1109/WHISPERS.2010.5594854","DOIUrl":null,"url":null,"abstract":"Determining the number of spectral endmembers in a hyper-spectral image is an important step in the spectral unmixing process, and under- or overestimation of this number may lead to incorrect unmixing for unsupervised methods. In this paper we discuss a new method for determining the number of endmembers, using recent advances in Random Matrix Theory. This method is entirely unsupervised and is computationally cheaper than other existing methods. We apply our method to synthetic images, including a standard test image developed by Chein-I Chang, with good results for Gaussian independent noise.","PeriodicalId":193944,"journal":{"name":"2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Using Random Matrix Theory to determine the number of endmembers in a hyperspectral image\",\"authors\":\"K. Cawse‐Nicholson, M. Sears, A. Robin, S. Damelin, K. Wessels, F. V. D. Bergh, R. Mathieu\",\"doi\":\"10.1109/WHISPERS.2010.5594854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Determining the number of spectral endmembers in a hyper-spectral image is an important step in the spectral unmixing process, and under- or overestimation of this number may lead to incorrect unmixing for unsupervised methods. In this paper we discuss a new method for determining the number of endmembers, using recent advances in Random Matrix Theory. This method is entirely unsupervised and is computationally cheaper than other existing methods. We apply our method to synthetic images, including a standard test image developed by Chein-I Chang, with good results for Gaussian independent noise.\",\"PeriodicalId\":193944,\"journal\":{\"name\":\"2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WHISPERS.2010.5594854\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2010.5594854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

确定高光谱图像中光谱端元的数目是光谱解混过程中的一个重要步骤,对该数目的估计过低或过高可能导致无监督方法解混错误。本文利用随机矩阵理论的最新进展,讨论了一种确定端元数的新方法。这种方法是完全无监督的,并且在计算上比其他现有方法便宜。我们将该方法应用于合成图像,包括Chein-I Chang开发的标准测试图像,对高斯无关噪声具有良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Random Matrix Theory to determine the number of endmembers in a hyperspectral image
Determining the number of spectral endmembers in a hyper-spectral image is an important step in the spectral unmixing process, and under- or overestimation of this number may lead to incorrect unmixing for unsupervised methods. In this paper we discuss a new method for determining the number of endmembers, using recent advances in Random Matrix Theory. This method is entirely unsupervised and is computationally cheaper than other existing methods. We apply our method to synthetic images, including a standard test image developed by Chein-I Chang, with good results for Gaussian independent noise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信