Yinsheng Xu, Fengyuan Ren, Tao He, Chuang Lin, Canfeng Chen, Sajal K. Das
{"title":"无线传感器网络中的实时路由:一种势场方法","authors":"Yinsheng Xu, Fengyuan Ren, Tao He, Chuang Lin, Canfeng Chen, Sajal K. Das","doi":"10.1145/2480730.2480738","DOIUrl":null,"url":null,"abstract":"Wireless Sensor Networks (WSNs) are embracing an increasing number of real-time applications subject to strict delay constraints. Utilizing the methodology of potential field in physics, in this article we effectively address the challenges of real-time routing in WSNs. In particular, based on a virtual composite potential field, we propose the Potential-based Real-Time Routing (PRTR) protocol that supports real-time routing using multipath transmission. PRTR minimizes delay for real-time traffic and alleviates possible congestions simultaneously. Since the delay bounds of real-time flows are extremely important, the end-to-end delay bound for a single flow is derived based on the Network Calculus theory. The simulation results show that PRTR minimizes the end-to-end delay for real-time routing, and also guarantees a tight bound on the delay.","PeriodicalId":263540,"journal":{"name":"ACM Trans. Sens. Networks","volume":"153 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Real-time routing in wireless sensor networks: A potential field approach\",\"authors\":\"Yinsheng Xu, Fengyuan Ren, Tao He, Chuang Lin, Canfeng Chen, Sajal K. Das\",\"doi\":\"10.1145/2480730.2480738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wireless Sensor Networks (WSNs) are embracing an increasing number of real-time applications subject to strict delay constraints. Utilizing the methodology of potential field in physics, in this article we effectively address the challenges of real-time routing in WSNs. In particular, based on a virtual composite potential field, we propose the Potential-based Real-Time Routing (PRTR) protocol that supports real-time routing using multipath transmission. PRTR minimizes delay for real-time traffic and alleviates possible congestions simultaneously. Since the delay bounds of real-time flows are extremely important, the end-to-end delay bound for a single flow is derived based on the Network Calculus theory. The simulation results show that PRTR minimizes the end-to-end delay for real-time routing, and also guarantees a tight bound on the delay.\",\"PeriodicalId\":263540,\"journal\":{\"name\":\"ACM Trans. Sens. Networks\",\"volume\":\"153 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Trans. Sens. Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2480730.2480738\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Trans. Sens. Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2480730.2480738","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Real-time routing in wireless sensor networks: A potential field approach
Wireless Sensor Networks (WSNs) are embracing an increasing number of real-time applications subject to strict delay constraints. Utilizing the methodology of potential field in physics, in this article we effectively address the challenges of real-time routing in WSNs. In particular, based on a virtual composite potential field, we propose the Potential-based Real-Time Routing (PRTR) protocol that supports real-time routing using multipath transmission. PRTR minimizes delay for real-time traffic and alleviates possible congestions simultaneously. Since the delay bounds of real-time flows are extremely important, the end-to-end delay bound for a single flow is derived based on the Network Calculus theory. The simulation results show that PRTR minimizes the end-to-end delay for real-time routing, and also guarantees a tight bound on the delay.