基于符合计数的距离辅助量子成像方法

Changyin Ji, Mu Zhou, Yong Wang, Wei Nie, Jingyang Cao
{"title":"基于符合计数的距离辅助量子成像方法","authors":"Changyin Ji, Mu Zhou, Yong Wang, Wei Nie, Jingyang Cao","doi":"10.1109/APCAP56600.2022.10069634","DOIUrl":null,"url":null,"abstract":"In order to reduce the time overhead of quantum imaging, a new ranging-assisted quantum imaging method based on coincidence counting is proposed in this paper. Firstly, the Digital Micromirror Device (DMD) is used to select the ranging area in the imaging area, and photon arrival time sequences on signal and reference light paths are recorded by delay coincidence. Secondly, the second-order correlation curve is drawn according to the coincidence count values to obtain the delay difference of these two optical paths. This delay difference corrects the photon arrival time sequences corresponding to the imaging area. Finally, the coincidence counting is performed based on the corrected time sequences, and the quantum imaging result is obtained according to the coincidence count values. Experimental results show that the proposed method can greatly reduce the time overhead of quantum imaging.","PeriodicalId":197691,"journal":{"name":"2022 IEEE 10th Asia-Pacific Conference on Antennas and Propagation (APCAP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ranging-assisted Quantum Imaging Method Based on Coincidence Counting\",\"authors\":\"Changyin Ji, Mu Zhou, Yong Wang, Wei Nie, Jingyang Cao\",\"doi\":\"10.1109/APCAP56600.2022.10069634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to reduce the time overhead of quantum imaging, a new ranging-assisted quantum imaging method based on coincidence counting is proposed in this paper. Firstly, the Digital Micromirror Device (DMD) is used to select the ranging area in the imaging area, and photon arrival time sequences on signal and reference light paths are recorded by delay coincidence. Secondly, the second-order correlation curve is drawn according to the coincidence count values to obtain the delay difference of these two optical paths. This delay difference corrects the photon arrival time sequences corresponding to the imaging area. Finally, the coincidence counting is performed based on the corrected time sequences, and the quantum imaging result is obtained according to the coincidence count values. Experimental results show that the proposed method can greatly reduce the time overhead of quantum imaging.\",\"PeriodicalId\":197691,\"journal\":{\"name\":\"2022 IEEE 10th Asia-Pacific Conference on Antennas and Propagation (APCAP)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 10th Asia-Pacific Conference on Antennas and Propagation (APCAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APCAP56600.2022.10069634\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 10th Asia-Pacific Conference on Antennas and Propagation (APCAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCAP56600.2022.10069634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了减少量子成像的时间开销,提出了一种基于符合计数的距离辅助量子成像方法。首先,利用数字微镜器件(DMD)在成像区域中选择测距区域,通过延时重合记录光子到达信号光路和参考光路的时间序列;其次,根据符合计数值绘制二阶相关曲线,得到两光路的时延差;这种延迟差校正了与成像区域相对应的光子到达时间序列。最后,根据校正后的时间序列进行符合计数,根据符合计数值获得量子成像结果。实验结果表明,该方法大大降低了量子成像的时间开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ranging-assisted Quantum Imaging Method Based on Coincidence Counting
In order to reduce the time overhead of quantum imaging, a new ranging-assisted quantum imaging method based on coincidence counting is proposed in this paper. Firstly, the Digital Micromirror Device (DMD) is used to select the ranging area in the imaging area, and photon arrival time sequences on signal and reference light paths are recorded by delay coincidence. Secondly, the second-order correlation curve is drawn according to the coincidence count values to obtain the delay difference of these two optical paths. This delay difference corrects the photon arrival time sequences corresponding to the imaging area. Finally, the coincidence counting is performed based on the corrected time sequences, and the quantum imaging result is obtained according to the coincidence count values. Experimental results show that the proposed method can greatly reduce the time overhead of quantum imaging.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信