预测回归中的模型平均

IF 2.9 4区 经济学 Q1 ECONOMICS
Chu-An Liu, Biing-Shen Kuo
{"title":"预测回归中的模型平均","authors":"Chu-An Liu,&nbsp;Biing-Shen Kuo","doi":"10.1111/ectj.12063","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this paper, we consider forecast combination in a predictive regression. We construct the point forecast by combining predictions from all possible linear regression models, given a set of potentially relevant predictors. We derive the asymptotic risk of least-squares averaging estimators in a local asymptotic framework. We then develop a frequentist model averaging criterion, an asymptotically unbiased estimator of the asymptotic risk, to select forecast weights. Monte Carlo simulations show that our averaging estimator compares favourably with alternative methods, such as weighted AIC, weighted BIC, Mallows model averaging and jackknife model averaging. The proposed method is applied to stock return predictions.</p></div>","PeriodicalId":50555,"journal":{"name":"Econometrics Journal","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2016-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/ectj.12063","citationCount":"22","resultStr":"{\"title\":\"Model averaging in predictive regressions\",\"authors\":\"Chu-An Liu,&nbsp;Biing-Shen Kuo\",\"doi\":\"10.1111/ectj.12063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>In this paper, we consider forecast combination in a predictive regression. We construct the point forecast by combining predictions from all possible linear regression models, given a set of potentially relevant predictors. We derive the asymptotic risk of least-squares averaging estimators in a local asymptotic framework. We then develop a frequentist model averaging criterion, an asymptotically unbiased estimator of the asymptotic risk, to select forecast weights. Monte Carlo simulations show that our averaging estimator compares favourably with alternative methods, such as weighted AIC, weighted BIC, Mallows model averaging and jackknife model averaging. The proposed method is applied to stock return predictions.</p></div>\",\"PeriodicalId\":50555,\"journal\":{\"name\":\"Econometrics Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2016-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1111/ectj.12063\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometrics Journal\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ectj.12063\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics Journal","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ectj.12063","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 22

摘要

在本文中,我们考虑预测回归中的预测组合。我们通过结合所有可能的线性回归模型的预测来构建点预测,并给出一组潜在的相关预测因子。我们得到了局部渐近框架下最小二乘平均估计的渐近风险。然后,我们开发了一个频率模型平均准则,即渐近风险的渐近无偏估计量,以选择预测权重。蒙特卡罗模拟表明,我们的平均估计方法优于其他方法,如加权AIC、加权BIC、Mallows模型平均和折刀模型平均。将该方法应用于股票收益预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model averaging in predictive regressions

In this paper, we consider forecast combination in a predictive regression. We construct the point forecast by combining predictions from all possible linear regression models, given a set of potentially relevant predictors. We derive the asymptotic risk of least-squares averaging estimators in a local asymptotic framework. We then develop a frequentist model averaging criterion, an asymptotically unbiased estimator of the asymptotic risk, to select forecast weights. Monte Carlo simulations show that our averaging estimator compares favourably with alternative methods, such as weighted AIC, weighted BIC, Mallows model averaging and jackknife model averaging. The proposed method is applied to stock return predictions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Econometrics Journal
Econometrics Journal 管理科学-数学跨学科应用
CiteScore
4.20
自引率
5.30%
发文量
25
审稿时长
>12 weeks
期刊介绍: The Econometrics Journal was established in 1998 by the Royal Economic Society with the aim of creating a top international field journal for the publication of econometric research with a standard of intellectual rigour and academic standing similar to those of the pre-existing top field journals in econometrics. The Econometrics Journal is committed to publishing first-class papers in macro-, micro- and financial econometrics. It is a general journal for econometric research open to all areas of econometrics, whether applied, computational, methodological or theoretical contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信