{"title":"功率定义负载的超级电容器尺寸","authors":"Dimitar D. Arnaudov, P. Punov, V. Dimitrov","doi":"10.1109/ET.2019.8878532","DOIUrl":null,"url":null,"abstract":"The paper presents an analytical model for supercapacitor loading when used in a power defined load scenario. The needed load power is defined as a combination of constant power and linearly increasing or decreasing segments. The analytical expression for the supercapacitor voltage and current under this scenario are presented along with some simulations and experimental results to verify the presented formulas.","PeriodicalId":306452,"journal":{"name":"2019 IEEE XXVIII International Scientific Conference Electronics (ET)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Supercapacitor Sizing for Power Defined Loads\",\"authors\":\"Dimitar D. Arnaudov, P. Punov, V. Dimitrov\",\"doi\":\"10.1109/ET.2019.8878532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents an analytical model for supercapacitor loading when used in a power defined load scenario. The needed load power is defined as a combination of constant power and linearly increasing or decreasing segments. The analytical expression for the supercapacitor voltage and current under this scenario are presented along with some simulations and experimental results to verify the presented formulas.\",\"PeriodicalId\":306452,\"journal\":{\"name\":\"2019 IEEE XXVIII International Scientific Conference Electronics (ET)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE XXVIII International Scientific Conference Electronics (ET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ET.2019.8878532\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE XXVIII International Scientific Conference Electronics (ET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ET.2019.8878532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The paper presents an analytical model for supercapacitor loading when used in a power defined load scenario. The needed load power is defined as a combination of constant power and linearly increasing or decreasing segments. The analytical expression for the supercapacitor voltage and current under this scenario are presented along with some simulations and experimental results to verify the presented formulas.