基于特征级融合的面部表情和生理信号情感识别双峰系统

F. Abdat, C. Maaoui, A. Pruski
{"title":"基于特征级融合的面部表情和生理信号情感识别双峰系统","authors":"F. Abdat, C. Maaoui, A. Pruski","doi":"10.1109/EMS.2011.21","DOIUrl":null,"url":null,"abstract":"This paper presents an automatic approach for emotion recognition from a bimodal system based on facial expressions and physiological signals. The information fusion is to combine information from both modalities. We tested two approaches, one based on mutual information which allows the selection of relevant information, the second approach is based on principal component analysis that allows the transformation of data into another space. The obtained results using both modalities are better compared to the separate use of each modality.","PeriodicalId":131364,"journal":{"name":"2011 UKSim 5th European Symposium on Computer Modeling and Simulation","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Bimodal System for Emotion Recognition from Facial Expressions and Physiological Signals Using Feature-Level Fusion\",\"authors\":\"F. Abdat, C. Maaoui, A. Pruski\",\"doi\":\"10.1109/EMS.2011.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an automatic approach for emotion recognition from a bimodal system based on facial expressions and physiological signals. The information fusion is to combine information from both modalities. We tested two approaches, one based on mutual information which allows the selection of relevant information, the second approach is based on principal component analysis that allows the transformation of data into another space. The obtained results using both modalities are better compared to the separate use of each modality.\",\"PeriodicalId\":131364,\"journal\":{\"name\":\"2011 UKSim 5th European Symposium on Computer Modeling and Simulation\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 UKSim 5th European Symposium on Computer Modeling and Simulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EMS.2011.21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 UKSim 5th European Symposium on Computer Modeling and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMS.2011.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

提出了一种基于面部表情和生理信号的双峰系统的情绪自动识别方法。信息融合就是将两种模式的信息结合起来。我们测试了两种方法,一种基于互信息,允许选择相关信息,第二种方法是基于主成分分析,允许将数据转换到另一个空间。与单独使用每种模态相比,使用两种模态获得的结果更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bimodal System for Emotion Recognition from Facial Expressions and Physiological Signals Using Feature-Level Fusion
This paper presents an automatic approach for emotion recognition from a bimodal system based on facial expressions and physiological signals. The information fusion is to combine information from both modalities. We tested two approaches, one based on mutual information which allows the selection of relevant information, the second approach is based on principal component analysis that allows the transformation of data into another space. The obtained results using both modalities are better compared to the separate use of each modality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信