条纹平面分区的双变量渐近性

D. Panario, L. Richmond, Benjamin Young
{"title":"条纹平面分区的双变量渐近性","authors":"D. Panario, L. Richmond, Benjamin Young","doi":"10.1137/1.9781611973006.3","DOIUrl":null,"url":null,"abstract":"We give a new asymptotic formula for a refined enumeration of plane partitions. Specifically: color the parts πi,j of a plane partition π according to the equivalence class of i --- j (mod 2), and keep track of the sums of the 0-colored and 1-colored parts seperately. We find, for large plane partitions, that the difference between these two sums is asymptotically Gaussian (and we compute the mean and standard deviation of the distribution). Our approach is to modify a multivariate technique of Haselgrove and Temperley.","PeriodicalId":340112,"journal":{"name":"Workshop on Analytic Algorithmics and Combinatorics","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Bivariate Asymptotics for Striped Plane Partitions\",\"authors\":\"D. Panario, L. Richmond, Benjamin Young\",\"doi\":\"10.1137/1.9781611973006.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give a new asymptotic formula for a refined enumeration of plane partitions. Specifically: color the parts πi,j of a plane partition π according to the equivalence class of i --- j (mod 2), and keep track of the sums of the 0-colored and 1-colored parts seperately. We find, for large plane partitions, that the difference between these two sums is asymptotically Gaussian (and we compute the mean and standard deviation of the distribution). Our approach is to modify a multivariate technique of Haselgrove and Temperley.\",\"PeriodicalId\":340112,\"journal\":{\"name\":\"Workshop on Analytic Algorithmics and Combinatorics\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Analytic Algorithmics and Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/1.9781611973006.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Analytic Algorithmics and Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611973006.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

给出了平面分区的精细化枚举的一个新的渐近公式。具体来说:根据i—j (mod 2)的等价类,给平面分区π的π、j部分上色,并分别记录0色部分和1色部分的和。我们发现,对于大的平面分区,这两个和之间的差是渐近的高斯分布(我们计算分布的均值和标准差)。我们的方法是修改Haselgrove和Temperley的多元技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bivariate Asymptotics for Striped Plane Partitions
We give a new asymptotic formula for a refined enumeration of plane partitions. Specifically: color the parts πi,j of a plane partition π according to the equivalence class of i --- j (mod 2), and keep track of the sums of the 0-colored and 1-colored parts seperately. We find, for large plane partitions, that the difference between these two sums is asymptotically Gaussian (and we compute the mean and standard deviation of the distribution). Our approach is to modify a multivariate technique of Haselgrove and Temperley.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信