A. Sheremet, O. Mishina, E. Giacobino, D. Kupriyanov
{"title":"光的原子量子存储器","authors":"A. Sheremet, O. Mishina, E. Giacobino, D. Kupriyanov","doi":"10.3233/978-1-60750-547-1-231","DOIUrl":null,"url":null,"abstract":"We consider the coherent stimulated Raman process developing in an optically dense and disordered atomic medium in application to the quantum memory scheme. Our theoretical model predicts that the hyperfine interaction in the excited state of alkali atoms can positively affect on the quantum memory efficiency. Based on the concept of the coherent information transfer we analyze and compare the memory requirements for storage of single photon and macroscopic multi-photon light pulses.","PeriodicalId":116912,"journal":{"name":"Quantum Cryptography and Computing","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atomic quantum memories for light\",\"authors\":\"A. Sheremet, O. Mishina, E. Giacobino, D. Kupriyanov\",\"doi\":\"10.3233/978-1-60750-547-1-231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the coherent stimulated Raman process developing in an optically dense and disordered atomic medium in application to the quantum memory scheme. Our theoretical model predicts that the hyperfine interaction in the excited state of alkali atoms can positively affect on the quantum memory efficiency. Based on the concept of the coherent information transfer we analyze and compare the memory requirements for storage of single photon and macroscopic multi-photon light pulses.\",\"PeriodicalId\":116912,\"journal\":{\"name\":\"Quantum Cryptography and Computing\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Cryptography and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/978-1-60750-547-1-231\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Cryptography and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/978-1-60750-547-1-231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We consider the coherent stimulated Raman process developing in an optically dense and disordered atomic medium in application to the quantum memory scheme. Our theoretical model predicts that the hyperfine interaction in the excited state of alkali atoms can positively affect on the quantum memory efficiency. Based on the concept of the coherent information transfer we analyze and compare the memory requirements for storage of single photon and macroscopic multi-photon light pulses.