基于智能手机加速度计的全卷积网络活动识别

Mooseop Kim, C. Jeong, Hyung-Cheol Shin
{"title":"基于智能手机加速度计的全卷积网络活动识别","authors":"Mooseop Kim, C. Jeong, Hyung-Cheol Shin","doi":"10.1109/ICTC.2018.8539419","DOIUrl":null,"url":null,"abstract":"This paper presents an activity recognition using smartphone built-in accelerometer. One of the most important issues in implementing activity recognition on embedded systems, including smartphones, is to achieve a high accuracy with a low computational cost and low memory usage. In this paper, we propose an activity recognition using the fully convolutional networks and introduce a new method to generate an input signal image using the combination of deep features and orientation-independent features. The experimental results show that the proposed method is able to achieve a high accuracy with a low memory usage.","PeriodicalId":417962,"journal":{"name":"2018 International Conference on Information and Communication Technology Convergence (ICTC)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Activity Recognition using Fully Convolutional Network from Smartphone Accelerometer\",\"authors\":\"Mooseop Kim, C. Jeong, Hyung-Cheol Shin\",\"doi\":\"10.1109/ICTC.2018.8539419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an activity recognition using smartphone built-in accelerometer. One of the most important issues in implementing activity recognition on embedded systems, including smartphones, is to achieve a high accuracy with a low computational cost and low memory usage. In this paper, we propose an activity recognition using the fully convolutional networks and introduce a new method to generate an input signal image using the combination of deep features and orientation-independent features. The experimental results show that the proposed method is able to achieve a high accuracy with a low memory usage.\",\"PeriodicalId\":417962,\"journal\":{\"name\":\"2018 International Conference on Information and Communication Technology Convergence (ICTC)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Information and Communication Technology Convergence (ICTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTC.2018.8539419\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Information and Communication Technology Convergence (ICTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTC.2018.8539419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

本文提出了一种基于智能手机内置加速度计的运动识别方法。在包括智能手机在内的嵌入式系统上实现活动识别最重要的问题之一是在低计算成本和低内存使用的情况下实现高精度。在本文中,我们提出了一种使用全卷积网络的活动识别方法,并引入了一种使用深度特征和方向无关特征相结合的新方法来生成输入信号图像。实验结果表明,该方法能够在较低的内存占用下获得较高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Activity Recognition using Fully Convolutional Network from Smartphone Accelerometer
This paper presents an activity recognition using smartphone built-in accelerometer. One of the most important issues in implementing activity recognition on embedded systems, including smartphones, is to achieve a high accuracy with a low computational cost and low memory usage. In this paper, we propose an activity recognition using the fully convolutional networks and introduce a new method to generate an input signal image using the combination of deep features and orientation-independent features. The experimental results show that the proposed method is able to achieve a high accuracy with a low memory usage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信