基于深度神经网络的口语识别研究

Alexandra Draghici, J. Abeßer, Hanna M. Lukashevich
{"title":"基于深度神经网络的口语识别研究","authors":"Alexandra Draghici, J. Abeßer, Hanna M. Lukashevich","doi":"10.1145/3411109.3411123","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate a previously proposed algorithm for spoken language identification based on convolutional neural networks and convolutional recurrent neural networks. We improve the algorithm by modifying the training strategy to ensure equal class distribution and efficient memory usage. We successfully replicate previous experimental findings using a modified set of languages. Our findings confirm that both a convolutional neural network as well as convolutional recurrent neural networks are capable to learn language-specific patterns in mel spectrogram representations of speech recordings.","PeriodicalId":368424,"journal":{"name":"Proceedings of the 15th International Audio Mostly Conference","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"A study on spoken language identification using deep neural networks\",\"authors\":\"Alexandra Draghici, J. Abeßer, Hanna M. Lukashevich\",\"doi\":\"10.1145/3411109.3411123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate a previously proposed algorithm for spoken language identification based on convolutional neural networks and convolutional recurrent neural networks. We improve the algorithm by modifying the training strategy to ensure equal class distribution and efficient memory usage. We successfully replicate previous experimental findings using a modified set of languages. Our findings confirm that both a convolutional neural network as well as convolutional recurrent neural networks are capable to learn language-specific patterns in mel spectrogram representations of speech recordings.\",\"PeriodicalId\":368424,\"journal\":{\"name\":\"Proceedings of the 15th International Audio Mostly Conference\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 15th International Audio Mostly Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3411109.3411123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 15th International Audio Mostly Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3411109.3411123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

在本文中,我们研究了先前提出的基于卷积神经网络和卷积递归神经网络的口语识别算法。我们通过修改训练策略来改进算法,以确保类的均匀分布和有效的内存使用。我们使用一组修改过的语言成功地复制了以前的实验结果。我们的研究结果证实,卷积神经网络和卷积递归神经网络都能够在语音记录的mel谱图表示中学习语言特定模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A study on spoken language identification using deep neural networks
In this paper, we investigate a previously proposed algorithm for spoken language identification based on convolutional neural networks and convolutional recurrent neural networks. We improve the algorithm by modifying the training strategy to ensure equal class distribution and efficient memory usage. We successfully replicate previous experimental findings using a modified set of languages. Our findings confirm that both a convolutional neural network as well as convolutional recurrent neural networks are capable to learn language-specific patterns in mel spectrogram representations of speech recordings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信