D. Nagy, M. Elmessary, M. Aldegunde, J. Lindberg, W. Dettmer, D. Peric, A. Loureiro, K. Kalna
{"title":"三维有限元Schrödinger方程修正蒙特卡罗模拟纳米级finfet","authors":"D. Nagy, M. Elmessary, M. Aldegunde, J. Lindberg, W. Dettmer, D. Peric, A. Loureiro, K. Kalna","doi":"10.1109/IWCE.2014.6865822","DOIUrl":null,"url":null,"abstract":"A 3D Finite Element Monte Carlo simulation with 2D Schrödinger based quantum correction are employed to forecast the performance of SOI Si FinFET devices scaled to gate length of 10.7 nm. The performance of these devices are greatly affected by the exact device geometry and thus the accurate description of cross-sections is essential. We chose three cross-sections: rectangular (REC), wide- (WTRI) and narrow-triangular (NTRI), with rounded corners, in 〈100〉 and 〈110〉 channel orientations. We found that the REC FinFETs give a larger drive current per perimeter than the WTRI (8%) and NTRI (26%) ones but are outperformed by the NTRI devices when normalised by the channel area [WTRI (18%) and REC (20%)]. The sub-threshold slopes are about 71, 69 and 66 mV/dec for REC, WTRI and NTRI, respectively.","PeriodicalId":168149,"journal":{"name":"2014 International Workshop on Computational Electronics (IWCE)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"3D Finite Element Schrödinger equation corrected Monte Carlo simulations of nanoscale FinFETs\",\"authors\":\"D. Nagy, M. Elmessary, M. Aldegunde, J. Lindberg, W. Dettmer, D. Peric, A. Loureiro, K. Kalna\",\"doi\":\"10.1109/IWCE.2014.6865822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A 3D Finite Element Monte Carlo simulation with 2D Schrödinger based quantum correction are employed to forecast the performance of SOI Si FinFET devices scaled to gate length of 10.7 nm. The performance of these devices are greatly affected by the exact device geometry and thus the accurate description of cross-sections is essential. We chose three cross-sections: rectangular (REC), wide- (WTRI) and narrow-triangular (NTRI), with rounded corners, in 〈100〉 and 〈110〉 channel orientations. We found that the REC FinFETs give a larger drive current per perimeter than the WTRI (8%) and NTRI (26%) ones but are outperformed by the NTRI devices when normalised by the channel area [WTRI (18%) and REC (20%)]. The sub-threshold slopes are about 71, 69 and 66 mV/dec for REC, WTRI and NTRI, respectively.\",\"PeriodicalId\":168149,\"journal\":{\"name\":\"2014 International Workshop on Computational Electronics (IWCE)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Workshop on Computational Electronics (IWCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWCE.2014.6865822\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Workshop on Computational Electronics (IWCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCE.2014.6865822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
采用三维有限元蒙特卡罗模拟和二维Schrödinger量子校正方法,对栅极长度为10.7 nm的SOI Si FinFET器件的性能进行了预测。这些器件的性能很大程度上受器件精确几何形状的影响,因此截面的准确描述是必不可少的。我们选择了三个横截面:矩形(REC)、宽三角形(WTRI)和窄三角形(NTRI),在< 100 >和< 110 >通道方向上有圆角。我们发现,REC finfet每周长的驱动电流比WTRI(8%)和NTRI(26%)的驱动电流大,但当按通道面积归一化时,其性能优于NTRI器件[WTRI(18%)和REC(20%)]。REC、WTRI和NTRI的亚阈值斜率分别约为71、69和66 mV/dec。
3D Finite Element Schrödinger equation corrected Monte Carlo simulations of nanoscale FinFETs
A 3D Finite Element Monte Carlo simulation with 2D Schrödinger based quantum correction are employed to forecast the performance of SOI Si FinFET devices scaled to gate length of 10.7 nm. The performance of these devices are greatly affected by the exact device geometry and thus the accurate description of cross-sections is essential. We chose three cross-sections: rectangular (REC), wide- (WTRI) and narrow-triangular (NTRI), with rounded corners, in 〈100〉 and 〈110〉 channel orientations. We found that the REC FinFETs give a larger drive current per perimeter than the WTRI (8%) and NTRI (26%) ones but are outperformed by the NTRI devices when normalised by the channel area [WTRI (18%) and REC (20%)]. The sub-threshold slopes are about 71, 69 and 66 mV/dec for REC, WTRI and NTRI, respectively.