CMOS图像传感器中可变增益列放大器的噪声和动态范围优化

R. Deng, Jin-jin Yu, Yong P. Chen
{"title":"CMOS图像传感器中可变增益列放大器的噪声和动态范围优化","authors":"R. Deng, Jin-jin Yu, Yong P. Chen","doi":"10.1117/12.900975","DOIUrl":null,"url":null,"abstract":"A low noise and relatively high dynamic range CMOS active pixel sensor (APS) using a variable-gain column amplifier is presented and analyzed. On this signal path there are a pixel source follower, a switched-capacitor, noise-cancelling, variable-gain amplifier, and a correlated double sample (CDS) circuit in each column. The using of high gain for the column amplifier reduces input-referred random noise, but it may reduce the dynamic range of this device at meanwhile. In this paper, we present a detail analysis for the noise and the dynamic range with the variable gain of the column amplifier. It is revealed that the total random read noise can be analyzed in three parts: the first part is from the pixel circuit, including the pixel-related fixed-pattern noise, reset noise and pixel source follower amplifier noise; the second part is from the column circuit, including the column-related fixed-pattern noise and the column amplifier noise; and the third part is from the output amplifier in the chip-level circuit. The analysis suggests that the noise components from the pixel and column can be significantly cancelled by the double-stage column noise canceller, and the noise components from the output amplifier in the chip-level circuit, are the major noise source and can be greatly reduced if the signal is amplified before this noise is added. Both the analysis and measured result indicate that we can achieve a low input-referred noise and keep a relatively high dynamic gain by choosing a proper column amplifier gain.","PeriodicalId":355017,"journal":{"name":"Photoelectronic Detection and Imaging","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The optimization of noise and dynamic range with variable-gain column amplifier in CMOS image sensors\",\"authors\":\"R. Deng, Jin-jin Yu, Yong P. Chen\",\"doi\":\"10.1117/12.900975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A low noise and relatively high dynamic range CMOS active pixel sensor (APS) using a variable-gain column amplifier is presented and analyzed. On this signal path there are a pixel source follower, a switched-capacitor, noise-cancelling, variable-gain amplifier, and a correlated double sample (CDS) circuit in each column. The using of high gain for the column amplifier reduces input-referred random noise, but it may reduce the dynamic range of this device at meanwhile. In this paper, we present a detail analysis for the noise and the dynamic range with the variable gain of the column amplifier. It is revealed that the total random read noise can be analyzed in three parts: the first part is from the pixel circuit, including the pixel-related fixed-pattern noise, reset noise and pixel source follower amplifier noise; the second part is from the column circuit, including the column-related fixed-pattern noise and the column amplifier noise; and the third part is from the output amplifier in the chip-level circuit. The analysis suggests that the noise components from the pixel and column can be significantly cancelled by the double-stage column noise canceller, and the noise components from the output amplifier in the chip-level circuit, are the major noise source and can be greatly reduced if the signal is amplified before this noise is added. Both the analysis and measured result indicate that we can achieve a low input-referred noise and keep a relatively high dynamic gain by choosing a proper column amplifier gain.\",\"PeriodicalId\":355017,\"journal\":{\"name\":\"Photoelectronic Detection and Imaging\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photoelectronic Detection and Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.900975\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photoelectronic Detection and Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.900975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出并分析了一种采用变增益列放大器的低噪声高动态范围CMOS有源像素传感器。在这个信号路径上,每个列中有一个像素源跟随器、一个开关电容、噪声消除、可变增益放大器和一个相关双采样(CDS)电路。采用高增益的列放大器可以降低输入参考随机噪声,但同时也会降低器件的动态范围。本文详细分析了变增益列放大器的噪声和动态范围。结果表明,随机读噪声可分为三部分分析:第一部分来自像素电路,包括与像素相关的固定模式噪声、复位噪声和像素源跟随放大器噪声;第二部分来自于列电路,包括与列相关的固定模式噪声和列放大器噪声;第三部分是从芯片级电路的输出放大器出发。分析表明,双级柱级降噪器可以明显地消除来自像素和列的噪声分量,而芯片级电路中来自输出放大器的噪声分量是主要噪声源,如果在加入该噪声之前对信号进行放大,则可以大大降低噪声分量。分析和实测结果表明,通过选择适当的列放大器增益,可以获得较低的输入参考噪声和较高的动态增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The optimization of noise and dynamic range with variable-gain column amplifier in CMOS image sensors
A low noise and relatively high dynamic range CMOS active pixel sensor (APS) using a variable-gain column amplifier is presented and analyzed. On this signal path there are a pixel source follower, a switched-capacitor, noise-cancelling, variable-gain amplifier, and a correlated double sample (CDS) circuit in each column. The using of high gain for the column amplifier reduces input-referred random noise, but it may reduce the dynamic range of this device at meanwhile. In this paper, we present a detail analysis for the noise and the dynamic range with the variable gain of the column amplifier. It is revealed that the total random read noise can be analyzed in three parts: the first part is from the pixel circuit, including the pixel-related fixed-pattern noise, reset noise and pixel source follower amplifier noise; the second part is from the column circuit, including the column-related fixed-pattern noise and the column amplifier noise; and the third part is from the output amplifier in the chip-level circuit. The analysis suggests that the noise components from the pixel and column can be significantly cancelled by the double-stage column noise canceller, and the noise components from the output amplifier in the chip-level circuit, are the major noise source and can be greatly reduced if the signal is amplified before this noise is added. Both the analysis and measured result indicate that we can achieve a low input-referred noise and keep a relatively high dynamic gain by choosing a proper column amplifier gain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信