实现了一个实时心电信号处理器

Shih-Yu Chang Chien, Cheng-Han Hsieh, Mark Po-Hung Lin, Q. Fang, Shuenn-Yuh Lee
{"title":"实现了一个实时心电信号处理器","authors":"Shih-Yu Chang Chien, Cheng-Han Hsieh, Mark Po-Hung Lin, Q. Fang, Shuenn-Yuh Lee","doi":"10.1109/ISBB.2014.6820941","DOIUrl":null,"url":null,"abstract":"A real-time ECG beat detection and classification system integrated with a decimation filter is presented in this paper. The decimation filter with a decimation ratio of 128 is utilized with four stages to optimize power. The beat detection algorithm is based on multi-scale Haar wavelet transform. The first step of the beat detection algorithm is to define a region composed of 128 sample points. The next step is to define the beat position. The beat detection algorithm which is verified with data from MIT/BIH Arrhythmia Database achieves a sensitivity of 99.67% and a positive predictability of 99.59%. The used heartbeat classification algorithm is called maximum similarity comparisons. The parameter of the classification is programmable for doctors. This proposed system can realize multiple functions in real time. This chip is fabricated in a 0.18 μm standard CMOS technology with chip area of 4.84 mm2, which achieves low power consumptions and can carry out a long term cardiac monitoring.","PeriodicalId":265886,"journal":{"name":"2014 IEEE International Symposium on Bioelectronics and Bioinformatics (IEEE ISBB 2014)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Implementation of a real-time ECG signal processor\",\"authors\":\"Shih-Yu Chang Chien, Cheng-Han Hsieh, Mark Po-Hung Lin, Q. Fang, Shuenn-Yuh Lee\",\"doi\":\"10.1109/ISBB.2014.6820941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A real-time ECG beat detection and classification system integrated with a decimation filter is presented in this paper. The decimation filter with a decimation ratio of 128 is utilized with four stages to optimize power. The beat detection algorithm is based on multi-scale Haar wavelet transform. The first step of the beat detection algorithm is to define a region composed of 128 sample points. The next step is to define the beat position. The beat detection algorithm which is verified with data from MIT/BIH Arrhythmia Database achieves a sensitivity of 99.67% and a positive predictability of 99.59%. The used heartbeat classification algorithm is called maximum similarity comparisons. The parameter of the classification is programmable for doctors. This proposed system can realize multiple functions in real time. This chip is fabricated in a 0.18 μm standard CMOS technology with chip area of 4.84 mm2, which achieves low power consumptions and can carry out a long term cardiac monitoring.\",\"PeriodicalId\":265886,\"journal\":{\"name\":\"2014 IEEE International Symposium on Bioelectronics and Bioinformatics (IEEE ISBB 2014)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Symposium on Bioelectronics and Bioinformatics (IEEE ISBB 2014)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBB.2014.6820941\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Symposium on Bioelectronics and Bioinformatics (IEEE ISBB 2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBB.2014.6820941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

提出了一种结合抽取滤波器的心电实时心跳检测与分类系统。采用抽取比为128的抽取滤波器,分四级优化功率。温度检测算法基于多尺度Haar小波变换。节拍检测算法的第一步是定义一个由128个采样点组成的区域。下一步是定义节拍位置。用MIT/BIH心律失常数据库的数据验证了该算法的灵敏度为99.67%,正预测性为99.59%。使用的心跳分类算法称为最大相似度比较。分类参数为医生可编程。该系统可以实时实现多种功能。该芯片采用0.18 μm标准CMOS工艺制造,芯片面积为4.84 mm2,实现了低功耗,可进行长期心脏监测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implementation of a real-time ECG signal processor
A real-time ECG beat detection and classification system integrated with a decimation filter is presented in this paper. The decimation filter with a decimation ratio of 128 is utilized with four stages to optimize power. The beat detection algorithm is based on multi-scale Haar wavelet transform. The first step of the beat detection algorithm is to define a region composed of 128 sample points. The next step is to define the beat position. The beat detection algorithm which is verified with data from MIT/BIH Arrhythmia Database achieves a sensitivity of 99.67% and a positive predictability of 99.59%. The used heartbeat classification algorithm is called maximum similarity comparisons. The parameter of the classification is programmable for doctors. This proposed system can realize multiple functions in real time. This chip is fabricated in a 0.18 μm standard CMOS technology with chip area of 4.84 mm2, which achieves low power consumptions and can carry out a long term cardiac monitoring.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信