深度存储:一种归档存储系统架构

L. You, Kristal T. Pollack, D. Long
{"title":"深度存储:一种归档存储系统架构","authors":"L. You, Kristal T. Pollack, D. Long","doi":"10.1109/ICDE.2005.47","DOIUrl":null,"url":null,"abstract":"We present the Deep Store archival storage architecture, a large-scale storage system that stores immutable data efficiently and reliably for long periods of time. Archived data is stored across a cluster of nodes and recorded to hard disk. The design differentiates itself from traditional file systems by eliminating redundancy within and across files, distributing content for scalability, associating rich metadata with content, and using variable levels of replication based on the importance or degree of dependency of each piece of stored data. We evaluate the foundations of our design, including PRESIDIO, a virtual content-addressable storage framework with multiple methods for interfile and intra-file compression that effectively addresses the data-dependent variability of data compression. We measure content and metadata storage efficiency, demonstrate the need for a variable-degree replication model, and provide preliminary results for storage performance.","PeriodicalId":297231,"journal":{"name":"21st International Conference on Data Engineering (ICDE'05)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"177","resultStr":"{\"title\":\"Deep Store: an archival storage system architecture\",\"authors\":\"L. You, Kristal T. Pollack, D. Long\",\"doi\":\"10.1109/ICDE.2005.47\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the Deep Store archival storage architecture, a large-scale storage system that stores immutable data efficiently and reliably for long periods of time. Archived data is stored across a cluster of nodes and recorded to hard disk. The design differentiates itself from traditional file systems by eliminating redundancy within and across files, distributing content for scalability, associating rich metadata with content, and using variable levels of replication based on the importance or degree of dependency of each piece of stored data. We evaluate the foundations of our design, including PRESIDIO, a virtual content-addressable storage framework with multiple methods for interfile and intra-file compression that effectively addresses the data-dependent variability of data compression. We measure content and metadata storage efficiency, demonstrate the need for a variable-degree replication model, and provide preliminary results for storage performance.\",\"PeriodicalId\":297231,\"journal\":{\"name\":\"21st International Conference on Data Engineering (ICDE'05)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"177\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"21st International Conference on Data Engineering (ICDE'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE.2005.47\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"21st International Conference on Data Engineering (ICDE'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2005.47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 177

摘要

我们提出了深度存储档案存储架构,这是一种大规模的存储系统,可以长时间高效、可靠地存储不可变数据。归档数据存储在节点集群中并记录到硬盘上。这种设计与传统文件系统的不同之处是,它消除了文件内部和文件之间的冗余,分发内容以实现可伸缩性,将丰富的元数据与内容关联起来,并根据每个存储数据块的重要性或依赖程度使用不同级别的复制。我们评估了我们设计的基础,包括PRESIDIO,这是一个虚拟的内容可寻址存储框架,具有多种文件间和文件内压缩方法,有效地解决了数据压缩的数据依赖性可变性。我们测量了内容和元数据存储效率,展示了对可变程度复制模型的需求,并提供了存储性能的初步结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Store: an archival storage system architecture
We present the Deep Store archival storage architecture, a large-scale storage system that stores immutable data efficiently and reliably for long periods of time. Archived data is stored across a cluster of nodes and recorded to hard disk. The design differentiates itself from traditional file systems by eliminating redundancy within and across files, distributing content for scalability, associating rich metadata with content, and using variable levels of replication based on the importance or degree of dependency of each piece of stored data. We evaluate the foundations of our design, including PRESIDIO, a virtual content-addressable storage framework with multiple methods for interfile and intra-file compression that effectively addresses the data-dependent variability of data compression. We measure content and metadata storage efficiency, demonstrate the need for a variable-degree replication model, and provide preliminary results for storage performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信