具有空间相关性的三维电感的统计提取与建模

Jacob Relles, Muhua Ngan, E. Tlelo-Cuautle, S. Tan, Chao Hu, Wenjian Yu, Yici Cai
{"title":"具有空间相关性的三维电感的统计提取与建模","authors":"Jacob Relles, Muhua Ngan, E. Tlelo-Cuautle, S. Tan, Chao Hu, Wenjian Yu, Yici Cai","doi":"10.1109/SM2ACD.2010.5672360","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel method for inductance extraction and modeling for interconnects considering process variations. The new method is based on the spectral stochastic method where orthogonal polynomials are used to represent the statistical processes in a deterministic way. Coefficients of the orthogonal polynomials are computed for the inductances. Statistical inductance values are then found using a fast multi-dimensional Gaussian quadrature method with sparse grid. To further improve the efficiency of the proposed method, a random variable reduction scheme is used. Given the interconnect wire variation parameters, the resulting method can derive the parameterized closed form of the inductance and its variation. We show that both partial and loop inductance variations can be significant given the width and height variations. This new approach can work with any existing inductance extraction tools to produce the variational inductance or impedance models. Experimental results show that our method is orders of magnitude faster than than the Monte Carlo method for several practical interconnect structures.","PeriodicalId":442381,"journal":{"name":"2010 XIth International Workshop on Symbolic and Numerical Methods, Modeling and Applications to Circuit Design (SM2ACD)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Statistical extraction and modeling of 3-D inductance with spatial correlation\",\"authors\":\"Jacob Relles, Muhua Ngan, E. Tlelo-Cuautle, S. Tan, Chao Hu, Wenjian Yu, Yici Cai\",\"doi\":\"10.1109/SM2ACD.2010.5672360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a novel method for inductance extraction and modeling for interconnects considering process variations. The new method is based on the spectral stochastic method where orthogonal polynomials are used to represent the statistical processes in a deterministic way. Coefficients of the orthogonal polynomials are computed for the inductances. Statistical inductance values are then found using a fast multi-dimensional Gaussian quadrature method with sparse grid. To further improve the efficiency of the proposed method, a random variable reduction scheme is used. Given the interconnect wire variation parameters, the resulting method can derive the parameterized closed form of the inductance and its variation. We show that both partial and loop inductance variations can be significant given the width and height variations. This new approach can work with any existing inductance extraction tools to produce the variational inductance or impedance models. Experimental results show that our method is orders of magnitude faster than than the Monte Carlo method for several practical interconnect structures.\",\"PeriodicalId\":442381,\"journal\":{\"name\":\"2010 XIth International Workshop on Symbolic and Numerical Methods, Modeling and Applications to Circuit Design (SM2ACD)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 XIth International Workshop on Symbolic and Numerical Methods, Modeling and Applications to Circuit Design (SM2ACD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SM2ACD.2010.5672360\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 XIth International Workshop on Symbolic and Numerical Methods, Modeling and Applications to Circuit Design (SM2ACD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SM2ACD.2010.5672360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们提出了一种考虑工艺变化的互连电感提取和建模的新方法。该方法是在谱随机方法的基础上,利用正交多项式以确定性的方式表示统计过程。计算了电感的正交多项式系数。然后利用稀疏网格的快速多维高斯正交法求出统计电感值。为了进一步提高该方法的效率,采用了随机变量约简方案。在给定互连线变化参数的情况下,该方法可以推导出电感及其变化的参数化封闭形式。我们表明,在给定宽度和高度变化的情况下,局部和环路电感的变化都是显著的。这种新方法可以与任何现有的电感提取工具一起工作,以产生变分电感或阻抗模型。实验结果表明,对于几种实际的互连结构,我们的方法比蒙特卡罗方法快几个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistical extraction and modeling of 3-D inductance with spatial correlation
In this paper, we present a novel method for inductance extraction and modeling for interconnects considering process variations. The new method is based on the spectral stochastic method where orthogonal polynomials are used to represent the statistical processes in a deterministic way. Coefficients of the orthogonal polynomials are computed for the inductances. Statistical inductance values are then found using a fast multi-dimensional Gaussian quadrature method with sparse grid. To further improve the efficiency of the proposed method, a random variable reduction scheme is used. Given the interconnect wire variation parameters, the resulting method can derive the parameterized closed form of the inductance and its variation. We show that both partial and loop inductance variations can be significant given the width and height variations. This new approach can work with any existing inductance extraction tools to produce the variational inductance or impedance models. Experimental results show that our method is orders of magnitude faster than than the Monte Carlo method for several practical interconnect structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信